Supplementary figures and tables

Fig. S1 Laser Scattering of Li-rich NMC

Particle size distribution analysis by HORIBA (LA 950) laser scattering 5 particle size distribution analyzer

Material: Li-rich NMC

¹⁰ Fig. S2 a. XPS spectra for O1s measured from pristine Li-rich NMC

pristine powders [From Reference 15]

15 Fig. S2b. XPS spectra for C1s, Mn2p, Ni2p, and Co2p measured from 1hr LiPON coated Li-rich NMC pristine powders

25 Table S1 First cycle irreversible capacity loss (ICL) as a function of depth of charge (SOC)

Positive active material	Applied voltage	% of 1st cycle	Discharge capacity
Li1.2Mn0.525 Ni0.175C00.1O2	vs. Li/Li+	irreversible capacity	(mAh/g)
		loss (ICL)	
Conventional Li-rich NMC		15	210
	4.6 V	12.14	225 (240 ofton 8
1hr LiPON coated Li-rich NMC		13-14	223 (240 after 6
			cycles)
Conventional Li-rich NMC		21	235 (250 after 8
			cycles)
1hr LiPON coated Li-rich NMC	4.8 V	13-15	
			250 (~270 after 10
			cycles)
			cycles)
Conventional Li-rich NMC		18-19	275
1hr LiPON coated Li-rich NMC		14	283
	4.0.37	15	245-255
LIPON coated onto Li-rich NMC	4.9 V		
electrode surface			

30 Table S2 Impedance parameters obtained by fitting of Nyquist plots presented in Fig 9 with and without LiPON coated Li-rich NMC samples at open circuit voltage, 4.5V and 4.9V during 1st charge.

Impedance	1hr LiPON coated	3hrs LiPON coated	Conventional
Parameters	on to Li-rich NMC	on to Li-rich NMC	Li-rich NMC
Ohmic resistance at OCV	10.94	13.52	11.6
(R_{Ω}/Ω)			
Surface layer resistance at	36	35.5	49
$OCV(R_1/\Omega)$			
Charge transfer resistance	284	413	3139
at OCV (R_{ct}/Ω)			
Ohmic resistance at 4.5 V	11	11.1	11.5
(R_{Ω}/Ω)			
Surface layer resistance at	42	45	98
$4.5 V (R_1/\Omega)$			
Charge transfer resistance	63	200	720
at $4.5V(R_{ct}/\Omega)$			
Ohmic resistance at 4.9 V	11.75	12.58	11.1
(R_{Ω}/Ω)			
Surface layer resistance at	29	54	80
4.9 V (R ₁ /Ω)			
Charge transfer resistance	104	447	982
at 4.9 V(R _{ct} /Ω)			

Figure S3. Cycling behavior at C/10 rates of charge-discharge for the (a) 1hr and (b) 3 hrs LiPON coated Li-rich NMC composite electrodes (as indicated) in the potential range 2.0 - 4.9 V, in EC-DMC $1:1/\text{LiPF}_6$ 1.2 M solutions at 25°C. The cycling protocol was similar to that of Figure 4.

35

40

The discharge profiles both for the 1 hr and 3 hrs LiPON coated Li-rich NMC composite electrodes move to lower voltage plateaus showing ⁴⁵ significant loss of energy. The rapid drop in the discharge voltage profiles during cycling is related to the gradual change to a spinel-like structure.

20

Fig. S4 Charge-discharge cycling data's of conventional Li-rich NMC composite electrodes at various rates followed by C/5 rate for 35 cycles in EC-DMC 1:2/LiPF₆ 1.2 M solutions

Fig. S5a Charge-discharge cycling data's of 3 hrs LiPON coated Li-rich NMC composite electrodes at various rates followed by C/10 rate for 225 cycles in EC-DMC $1:2/\text{LiPF}_6$ 1.2 M solutions (at 25 °C).

5

- **Fig. S5b** The voltage profiles at various rates corresponding to Fig. S5a. ¹⁰ Cycling protocol was constant current constant voltage step at 4.9 V vs.
- Li/Li⁺ until the current reach value of C/50. The lower cut off potential was 2.0 V vs. Li/Li⁺.

