Supporting information (SI)

Supporting information No.1;

In the present work, the amount of Pt in the electro-catalysts is expressed by using $mgml^{-1}$ unit. The authors showed the relationship between $mgml^{-1}$ and wt% for explanation of Pt content in the total mass including CeO_x nanowire and conductive carbon in Table 1 for SI.

Table 1 for SIRelationship between wt% and mgml-1for explanation of Pt content.

50 wt%	Pt	.9.75mgml ⁻¹ Pt
30 wt%	Pt	.5.85mgml ⁻¹ Pt
20 wt%	Pt	.3.90mgml ⁻¹ Pt
10 wt%	Pt	.1.95mgml ⁻¹ Pt
5 wt%	Pt	0.975mgml ⁻¹ Pt
1 wt%	Pt	.0.195mgml ⁻¹ Pt

Supporting information No.2;

The CV data obtained from the lower amount of Pt (i.e. 0.195 mgml^{-1} , or 1wt%) in Pt-CeO_x nanowires/C in Figure 1 for SI showed the noisy and low reliability data.

Figure 1 for SI Onset potential of methanol oxidation in forward sweep on 9.75mgml^{-1} Pt-CeO_x nanowire (NW)/C (black dashed line), 1.95mgml^{-1} Pt-CeO_x NW/C anode (gray solid line), 0.975mgml^{-1} Pt-CeO_x NW/C anode (black solid line), and commercially available 3.90mgml^{-1} Pt/C anode (gray dashed line) and 0.195 mgml^{-1} Pt/C anode (black dotted line) at 28° C in the mixed solution of 0.5M aqueous H₂SO₄ solution and 0.5M aqueous CH₃OH solution at 1mVs^{-1} .