Supporting Information

Stability and Degradation Mechanisms of Metal-Organic Frameworks containing the Zr₆O₄(OH)₄ Secondary Building Unit

Jared B. DeCoste¹, Gregory W. Peterson², Himanshu Jasuja³, T. Grant Glover¹, Yougui Huang³, and Krista S. Walton³

¹SAIC, Inc. PO Box 68, Gunpowder, MD 21010

²Edgewood Chemical Biological Center, 5183 Blackhawk Rd, Aberdeen Proving Ground, MD 21010

³Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, 211 Ferst Drive NW, Atlanta, GA 30332

Figure S1. PXRD pattern of ZrMOF-BDC before (bottom, blue) and after (top, red) the water isotherm experiment.

Figure S2. PXRD pattern of ZrMOF-NH₂ before (bottom, blue) and after (top, red) the water isotherm experiment.

Figure S3. PXRD pattern of ZrMOF-BPDC before (bottom, blue) and after (top, red) the water isotherm experiment.

Figure S4. PXRD pattern of ZrMOF-BIPY before (bottom, blue) and after (top, red) the water isotherm experiment.

Figure S5. ATR-FTIR spectra from 1800 to 600 cm^{-1} of the neat organic linker for each ZrMOF as well as $ZrCl_4$ and $Zr(OH)_4$.