Supporting Information:

Fig. S1. FESEM images of carbon samples: (a) PF-blank; (b) PF-Zn-1:3; (c) PF-Zn-1:5; (d) PF-PVB-1:1.

Fig. S2. XRD patterns of the PF-blank and PF-Zn-1:5 samples.

Fig. S3. Galvanostatic charge-discharge curves measured at a current density of 1 A g^{-1} of the carbon samples.

Fig. S4. Specific capacitances at various current densities of the carbon samples.

Fig. S5. XPS spectrum of the PF-Zn-PVB-1:5:1 sample.

Fig. S6. PF-Zn-PVB-1:5:1 sample: (a) Cyclic voltammograms at various scan rates; (b) Specific capacitances derived from CV tests; (c) Galvanostatic charge-discharge curves with different potential windows measured at a current density of 1 A g^{-1} ; (d) Specific capacitances at various current densities; (e) Cycling stability after 10000th cycles as well as the cyclic voltammograms of the 1st and 10000th cycles (the inset) at a current density of 20 A g^{-1} ; (f) Nyquist plots before/after 100 cycles.

Notes: <u>The electrochemical results shown in Fig. S6 are measured in a two-</u><u>electrode cell.</u>

Gravimetric capacitance for a single electrode was calculated from the discharge curve in a two-electrode cell as

$$C_{
m single} = rac{4 l \Delta t}{m \Delta V}$$

where I (A) is the constant current and m (mg) is the total mass for both carbon electrodes, Δt (s) is the discharge time, and ΔV (V) is the voltage change during the discharge process.

Ref. J. Han, L. L. Zhang, S. Lee, S. Park et al. ACS NANO, 2013, 7, 19-26.