## **Supporting Information for**

Graphene decorated with molybdenum dioxide nanoparticles for use in high energy lithium ion capacitors with an organic electrolyte

Pengxian Han,  $\dagger^a$  Wen Ma,  $\dagger^{a,b}$  Shuping Pang,<sup>*a*</sup> Qingshan Kong,<sup>*a*</sup> Jianhua Yao<sup>*a*</sup>, Caifeng Bi<sup>*b*</sup> and Guanglei Cui \*<sup>*a*</sup>

<sup>a</sup> Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China. Fax: +86 532 80662744; Tel: +86 532 80662745; E-mail: cuigl@qibebt.ac.cn
<sup>b</sup> College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
<sup>†</sup> These authors contributed equally to this work.



Fig. S1 XRD patterns of (a) the pristine graphite powder and (b) GO.



Fig. S2 Plot of potential vs. capacity for  $G-MoO_2$  based capacitor.



Fig. S3 Cycle performance of  $MoO_2$  based capacitor, the current density of the first five cycles is 0.05 A<sup>-1</sup> g, and then the following current density is 0.1 A<sup>-1</sup> g.