Supplementary Information

A new "zero-strain" material for electrochemical lithium insertion

Yunpeng Gu,^{*a*} Kouji Taniguchi,^{*b*} Ryosuke Tajima,^{*a*} Shin-ichi Nishimura,^{*c*} Daisuke Hashizume,^{*d*} Atsuo Yamada^{*c*} and Hidenori Takagi^{*b*,*d*}

^a Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561, Japan. ^b Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan. Fax: +81-3-5841-4619; Tel: +81-3-5841-4619; E-mail: taniguchi@phys.s.u-tokyo.ac.jp ^c Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656,

Japan. Advanced Science Institute, RIKEN, Wako 351-0198, Japan.

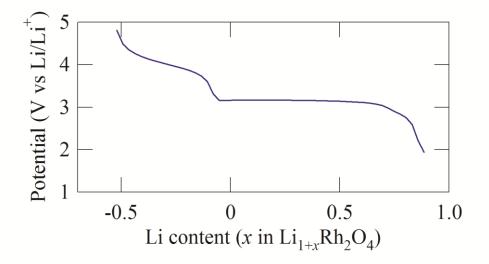


Figure S1. Electrochemical Li extraction and insertion for LiRh₂O₄. The cell voltage was initially charged to 4.8 V (vs Li/Li⁺), and then the discharge test was performed between 4.8 V and 2.0 V at a constant current density of 10 mA g⁻¹.