Supporting information

for

Mesoporous Carbon Decorated Graphene as Efficient Electrode Materials for Supercapacitor

Meng Li, Jun Ding and Junmin Xue*

Department of Materials Science and Engineering, National University of Singapore,

Singapore, 117573

* Corresponding author: Tel: +65 65164655

Email address: <u>msexuejm@nus.edu.sg</u> (Dr J.M. Xue)

Figure S1: TGA pattern of pure F127

Figure S2: TEM image of MCG-5

Figure S3: TEM image of MCG-20

Figure S4: TEM image of MCG-40

Figure S5: SEM images of A) MCG-20; B) MCG-40. The insert is size distribution of MCN in corresponding sample. The data was obtained by analyzing 100-200 spheres per sample from low magnification TEM images.

Figure S7: Electrochemical behavior of rGO and MCNs-150 (a) CV curves measured at the scan rate of 25 mV/s; (b) Galvanostatic charge-discharge curves at the current density of 0.5 A/g; (c) Variation of IR drop with discharge current density; (d) EIS under the influence of an ac voltage of 10 mV.

Figure S8: Electrochemical behavior of simple mixture of graphene and MCNs-150 (typical weight ratio of 1:1) (a) CV curves measured at the scan rate of 25 mV/s; (b) Galvanostatic charge-discharge curves at the current density of 0.5 A/g

Materials	Electrode system	Current density	Specific capacitance	Ref.
MCG	Three	0.5A/g	213~113 F/g	Present work
Mesoporous carbon	Three	0.5A/g	132~113 F/g	[s1]
MCN	Three	0.5A/g	142~98 F/g	[16]
MCS	Two	0.25A/g	225 F/g	[s2]
3D Macroporous	Three	1A/g	202 F/g	[\$3]
Graphene				
GNS	Three	0.1A/g	150 F/g	[s4]
Activated Graphene	Two	50mV/s	14 µ F/cm ⁻²	[9]
B and N co-doped Graphene	Two Three	5 mV/s 1 mV/s	62 F/g 239 F/g	[s5]
N doped CNF	Three	1A/g	202 F/g	[\$6]
GMCS	Two	0.1A/g	39.4 F/g	[21]
Graphene Foam	Two	0.5A/g	110	[s7]
Graphene/CNT	Three	1 mV/s 0.6A/g	175 F/g 230 F/g	[\$8]

Table S1. Typical EDLC capacitance of carbonaceous materials based on the aqueous electrolyte.

References

[s1] J. X. Wang, C. F. Xue, Y. Y. Lu, F. Zhang, B. Tu, D. Y. Zhao, Carbon, 2011, 49, 4580–4588.

[s2] Z. Lei, N. Christov, L. L. Zhang and X. S. Zhao, J. Mater. Chem., 2011, 21, 2274-2281.

[s3] B. G. Choi, M. H. Yang, W. H. Hong, J. W. Choi and Y. S. Huh, ACS Nano 2012, 6, 4020-4028.

[s4] X. Du, P. Guo, H. Song and X. Chen, *Electrochim Acta*, 2010, 55, 4812-4819.

[s5] Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. F. Feng and K. Mullen, *Adv. Mater.* 2012, **24**, 5130-5135.

[s6] L. F. Chen, X. D. Zhang, H. W. Liang, M. G. Kong, Q. F. Guan, P. Chen, Z. Yu. Wu and S. H. Yu, *ACS Nano*, 2012, **6**, 7092-7102.

[s7] Z. Q. Niu, J. Chen, H. H. Hng, J. Ma and X. D. Chen, Adv. Mater. 2012, 24, 4144-4150.

[s8] D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen and J. Zhang, J. Mater. Chem., 2012, 22, 14696-14704.