
Porous Polyaniline Nanofiber/Vanadium Pentoxide Layer-by-Layer Electrodes for Energy Storage

*Lin Shao,*¹ *Ju-Won Jeon*² *and Jodie L. Lutkenhaus*²*

- Department of Chemical & Environmental Engineering, Yale University, New Haven, Connecticut. 06511
- Department of Chemical Engineering, Texas A&M University, College Station, Texas.
 77843

Figure S1. UV-Vis spectra of (a) V_2O_5 solution at pH 2.5 and (b) PANI nanofibers in dispersion at pH 2.5.

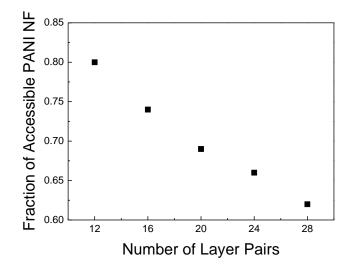
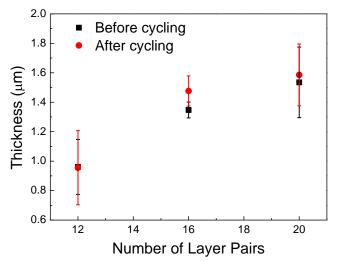



Figure S2. Fraction of electrochemically accessible PANI in (PANI NF/V₂O₅)_n LbL films as determined via UV-Vis spectroscopy. The fraction was calculated as $(A_{3.5}-A_{2.0})/A_{2.0}$ at λ =825 nm.

Figure S3. Thickness comparison for $(PANI NF/V_2O_5)_n$ LbL films before and after cycling 500 times.

Figure S4. UV-Vis spectra of (PANI NF/V_2O_5)₁₆ LbL films before and after 1,000 charge-discharge cycles.

Table S1. Charge-storage contributions as a function of scan rate for sample with 16 layer pairs.

NonDiffusion-Limited Fraction	Ideal Diffusion-Limited Fraction
0.35	0.65
0.49	0.51
0.55	0.45
0.63	0.37
0.75	0.25
0.79	0.21
	0.35 0.49 0.55 0.63 0.75

Calculation for the number of Li^+ moles inserted per mole of V_2O_5 for (PANI NF/V₂O₅)₁₆

Electrochemically accessible fraction of PANI NF: 0.74;

Composition from XPS: 40.6 wt% PANI NF and 59.4 wt% V₂O₅;

Theoretical capacity of PANI NF: 148 mAh/g;

Theoretical capacity of V₂O₅ under the assumption of 1 mole electron insertion for per mole of

V₂O₅: 147.26 mAh/g;

Factor used for the conversion between units of mAh and C: 3.6, namely 1 C=1/3.6 mAh;

The number of electron inserted for per mole of V_2O_5 : Y;

Therefore, based on the equation:

Faradaic charge transferred for PANI + Faradaic charge transferred for V_2O_5 = Total Faradaic

charge transferred Eqn. S1

0.74*0.406*148+0.594*147.26*Y=418/3.6 Eqn. S2

Y=0.82.