Supporting Information

Template-free synthesis of mesoporous X-Mn (X = Co, Ni, Zn) bimetal oxides and catalytic application in room-temperature removal of low-concentration NO

Zhu Shu^a, Weimin Huang^a, Zile Hua^a, Lingxia Zhang^a, Xiangzhi Cui^a, Yu Chen^a, Hangrong Chen^a, Chenyang Wei^a, Yongxia Wang^a, Xianggian Fan^a, Heliang Yao^a, Dannong He^b, Jianlin Shi^{a,*}

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Ins titute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China
^bNational Engineering Research Center for Nanotechnology, 28 East Jiangchuan Road, Shanghai

200241, P. R. China

*Corresponding author: Jianlin Shi (E-mail: jlshi@sunm.shcnc.ac.cn, Tel.: +86-21-52412712, Fax: +86-21-52413122, Postal address: 1295 Dingxi Road, Shanghai 200050, P. R. China) Fig. S1. XRD patterns of the precursors with single metal element (Mn (or Co, Ni,

Zn)-oxalate) or two metal elements (Co (or Ni, Zn)_xMn_y-oxalate).

Fig. S2. TG curves of three representative bimetal precursors (Co_1Mn_6 -oxalate, Ni_1Mn_8 -oxalate and Zn_1Mn_6 -oxalate) and four single-metal precursors (Mn (or Co, Ni, Zn)-oxalate).

Fig. S3. XRD patterns of the 300 °C calcined samples with single metal element (Mn (or Co, Ni, Zn)-300) or two metal elements (Co (or Ni, Zn)_xMn_y-300).

Fig. S4. Low-angle XRD patterns of Co_1Mn_6 -300, Ni_1Mn_8 -300 and Zn_1Mn_6 -300.

Fig. S5. H₂-TPR curves of Mn-300, Co₁Mn₆-300, Ni₁Mn₈-300 and Zn₁Mn₆-300.

Fig. S6. Time courses of NO removal on Co_1Mn_6 -300, Co_1Mn_6 -400, Ni_1Mn_8 -300, Ni_1Mn_8 -400, Zn_1Mn_6 -300 and Zn_1Mn_6 -400. Reaction conditions: [NO] = 10 ppm, [O₂] = 21 %, balance = N₂, temperature = 25 °C and GHSV = 120,000 mL·g⁻¹·h⁻¹.

Fig. S7. Time courses of outlet concentrations of NO and NO₂ in the NO adsorption tests in the O₂-free condition on Co₁Mn₆-300, Ni₁Mn₈-300 and Zn₁Mn₆-300. Reaction conditions: [NO] = 10 ppm, balance = N₂, temperature = 25 °C and GHSV = 120,000 mL·g⁻¹·h⁻¹.

Fig. S8. TPD curves of Co_1Mn_6 -300, Ni_1Mn_8 -300 and Zn_1Mn_6 -300 after the first

cycles of NO removal tests.