Role of Mesoporosity in Cellulose Fiber for Paper-Based Fast

Electrochemical Energy Storage

Xinyi Chen,^{1,2†} Hongli Zhu, ^{1†} Chanyuan Liu,^{1,2} Yu-Chen Chen,¹ Nicholas Weadock¹, Gary Rubloff,^{1,2} Liangbing Hu¹*

- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 USA
- 2. Institute for Systems Research, University of Maryland, College Park, MD 20742 USA

[†]Equal contribution

*Email: <u>binghu@umd.edu</u>

Supporting materials

Figure 1s: Relationship of V_2O_5 mass and electrode rate performance. The mass ratio of 500 and 1000 cycle ALD V_2O_5 is about 5% and 10% of total electrode, respectively. Inset shows the dark field TEM images of 500 and 1000 cycle ALD V_2O_5 on CNT. In dark field TEM, the brightness indicates heavy elements or thicker materials. Scale bar in the TEM is 500 nm.

Figure 2s: Estimated device level performance of V₂O₅/CNT paper-electrodes (red dots) in the Ragone plot from US Defence Logistics Agency. Taking 5% mass ratio of V₂O₅ over total cathode and assuming the cathode mass is 40% of total device, we estimate the device performance as $40\% \times 5\% \times$ active material V₂O₅ performance.