Organic photovoltaics based on a cross-linkable PCPDTBT analogue; synthesis, morphological studies, solar cell performance and enhanced lifetime

Huw Waters, Shu-Wei Chang, Jeff Kettle*, Chun-Jen Su, Wei-Ru Wu, U-Ser Jeng, Ya-Ching Tsai, and Masaki Horie*

School of Electronic Engineering, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT, Wales, UK.

Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemical Engineering, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu, 30013 Taiwan.

National Synchrotron Radiation Research Center, 101, Hsin-Ann Rd. Science Park, Hsinchu, 30076, Taiwan

Supplementary Information

Correspondence Address

Dr. Jeff Kettle

School of Electronic Engineering, Bangor University, Dean st., Bangor, Gwynedd, LL57 1UT, Wales, UK.

E-mail: j.kettle@bangor.ac.uk

Co-correspondence Address

Dr. Masaki Horie

Department of Chemical Engineering, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Road, Hsin-Chu, 30013 Taiwan.

E-mail: mhorie@mx.nthu.edu.tw

Fig. SI-1 ¹H and ¹³C NMR (500 MHz, CDCl₃) spectra of 4,4-bis(5-hexenyl)-CPDT.

Fig. SI-2 ¹H and ¹³C NMR (500 MHz, CDCl₃) spectra of 2,6-dibromo-4,4-bis(5-hexenyl)-CPDT.

Fig. SI-3 FAB mass spectrum of 4,4-bis(5-hexenyl)-CPDT.

Fig. SI-4 FAB mass spectrum of 2,6-dibromo-4,4-bis(5-hexenyl)-CPDT.

Fig. SI-5 ¹H NMR (500 MHz, CDCl₃) spectrum of polymer **5**.

Fig. SI-6 ¹H NMR spectrum (500 MHz, $CDCl_3$) of resulting product(s) of the model reaction. Integration ratio between -OMe and -CH₃ is 2:1, supposed two anisole additives.

Fig. SI-7 ESI mass spectrum of resulting product(s) of the model reaction. $[M - OMe_2]^+ = 279$, supposed two anisole additives.

(b)

Fig. SI-8 Fourier Transform infrared (FTIR) measurements of polymers **4**, and **7** before and after crosslinking/annealing. Polymer 7 showed consistent changes to polymer **5**. Polymer **4** and **6** (not shown) displayed minor changes due to lower reactive site concentration (5%)

(a)

(c)

Fig. SI-9 Photographic images of vials of (a) polymer **4**, (b) polymer **5** and (c) polymer **6** before (left hand vial) and after crosslinking (right hand vial).

S8

(c)

Annealed at	$V_{OC}(V)$	J_{SC} (mA/cm ²)	FF	PCE (%)
80°C				
Polymer 4	0.6351	12.84	44.75	3.65
Polymer 5	0.6591	12.44	46.24	3.80

Fig. SI-10 (a) OPV performance of 5 after annealing the active layer at 260°C; no photocurrent was observed due to PCBM aggregation and PEDOT:PSS degradation. Similar performance was observed in polymer 4 after annealing the active layer at 260°C. The likely cause was due to PCBM aggregation and also PEDOT:PSS degradation. Figure (b) shows the active layer surface before and after annealing at 260°C for a $5x5\mu m$ area showing PCBM aggregation. Both polymer 4 and 5 performed well at temperatures below crosslinking temperatures (see table SI-10 c)

Fig. SI-11 Absorption spectra of (a) **1** and **6** (neat) at 100nm film thickness and (b) **1** and **6** blended with $PCB_{71}BM$ and using 1,8-octanedithiol processing additive at 120nm film thickness.