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Fig. SI-1 1H and 
13

C NMR (500 MHz, CDCl3) spectra of 4,4-bis(5-hexenyl)-CPDT. 
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Fig. SI-2 1H and 
13

C NMR (500 MHz, CDCl3) spectra of 2,6-dibromo-4,4-bis(5-hexenyl)-CPDT. 
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Fig. SI-3 FAB mass spectrum of 4,4-bis(5-hexenyl)-CPDT.  

 

 

 

Fig. SI-4 FAB mass spectrum of 2,6-dibromo-4,4-bis(5-hexenyl)-CPDT.  
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Fig. SI-5 1H NMR (500 MHz, CDCl3) spectrum of polymer 5. 
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Scheme SI-1. Model reaction 

 

 

 

 

 

 

 

 

 
 

Fig. SI-6 1H NMR spectrum (500 MHz, CDCl3) of resulting product(s) of the model reaction. 

Integration ratio between -OMe and -CH3 is 2:1, supposed two anisole additives. 
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Fig. SI-7 ESI mass spectrum of resulting product(s) of the model reaction. [M – OMe2]
+
 = 279, 

supposed two anisole additives. 
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Fig. SI-8 Fourier Transform infrared (FTIR) measurements of polymers 4, and 7 before and after 

crosslinking/annealing. Polymer 7 showed consistent changes to polymer 5. Polymer 4 and 6 (not 

shown) displayed minor changes due to lower reactive site concentration (5%) 

 

 

(a)                          (b)    (c) 

 

   
 

 

Fig. SI-9 Photographic images of vials of (a) polymer 4, (b) polymer 5 and (c) polymer 6 before 

(left hand vial) and after crosslinking (right hand vial).  
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(a) 

 

(b)  

  

 

(c) 

Annealed at 

80°C 

VOC (V) JSC (mA/cm
2
) FF PCE (%) 

Polymer 4  0.6351 12.84 44.75 3.65 

Polymer 5 0.6591 12.44 46.24 3.80 

 

Fig. SI-10 (a) OPV performance of 5 after annealing the active layer at 260°C; no photocurrent 

was observed due to PCBM aggregation and PEDOT:PSS  degradation. Similar performance was 

observed in polymer 4 after annealing the active layer at 260°C. The likely cause was due to 

PCBM aggregation and also PEDOT:PSS degradation.  Figure (b) shows the active layer surface 

before and after annealing at 260°C for a 5x5µm area showing PCBM aggregation. Both polymer 

4 and 5 performed well at temperatures below crosslinking temperatures (see table SI-10 c) 
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Fig. SI-11 Absorption spectra of (a) 1 and 6 (neat) at 100nm film thickness and (b) 1 and 6 

blended with PCB71BM and using 1,8-octanedithiol processing additive at 120nm film thickness. 
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