**Supporting Information** 

## Pendant Group Effects on the Optical and Electrical Properties of Carbazole-Diketopyrrolopyrrole Copolymers

Obum Kwon,<sup>a</sup> Jang Jo,<sup>b</sup> Bright Walker,<sup>c</sup> Guillermo C. Bazan,<sup>a</sup> and Jung Hwa Seo<sup>\*d</sup>

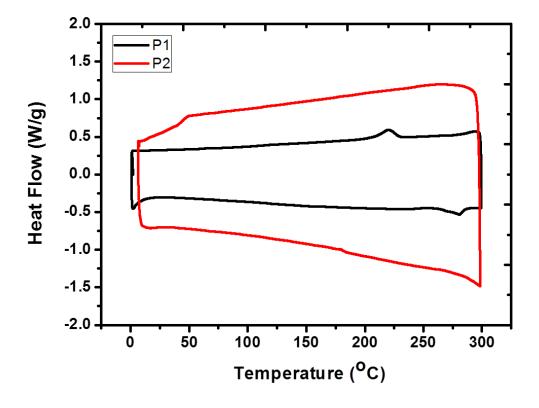
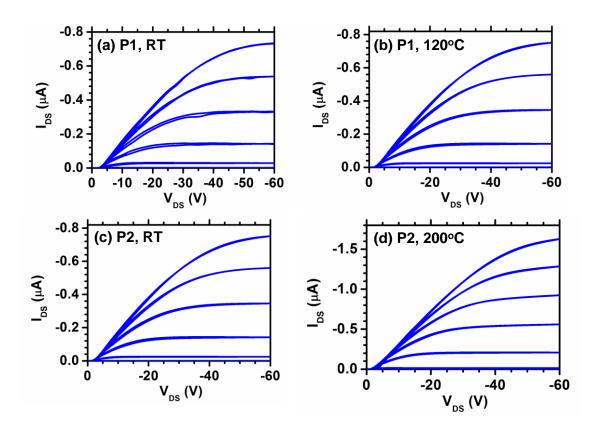
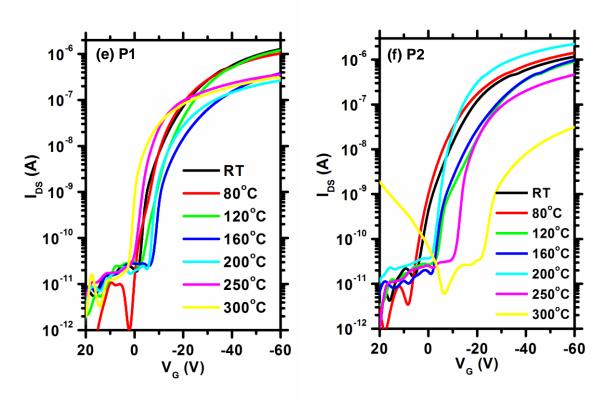



Figure S1. Differential Scanning Calorimetry (DSC) traces of P1 and P2.

<sup>&</sup>lt;sup>a</sup>Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106


<sup>&</sup>lt;sup>b</sup>Department of Physics, University of California, Santa Barbara, California 93106


<sup>&</sup>lt;sup>c</sup>Department of Interdisciplinary Green Energy, Ulsan National Institute of Science and Technology, Ulsan 689-798, South Korea

<sup>&</sup>lt;sup>d</sup>Department of Materials Physics, Dong-A University, Busan 614-070, South Korea



Figure S2. Thermogravimetric Analysis (TGA) of P1 and P2.





**Figure S3**. Output curves of **P1** FETs (a) at room temperature and (b) annealed at 120°C and **P2** FETs (c) at room temperature and (d) annealed at 200°C. Transfer curves of (e) **P1** and (f) **P2** FETs as a function of annealing temperature.

**Table 1**. Summary of device performance of **P1** and **P2** FETs with various annealing temperatures.

| Annealing<br>Temp. (°C) | P1                     |             |                     | P2                     |             |                       |
|-------------------------|------------------------|-------------|---------------------|------------------------|-------------|-----------------------|
|                         | μ (cm²/V·s)            | $V_{th}(V)$ | $I_{on}/I_{off}$    | μ (cm²/V·s)            | $V_{th}(V)$ | $I_{on}/I_{off}$      |
| RT                      | 1.3 × 10 <sup>-3</sup> | -6.7        | $1.6 \times 10^7$   | $1.6 \times 10^{-3}$   | -6          | $2.6 \times 10^6$     |
| 80                      | 1.2 × 10 <sup>-3</sup> | -8.5        | $1.0 \times 10^{7}$ | $1.6 \times 10^{-3}$   | -3          | $2.9 \times 10^{6}$   |
| 120                     | 1.7 × 10 <sup>-3</sup> | -11         | $6.8 \times 10^5$   | $1.6 \times 10^{-3}$   | -16         | $3.5 \times 10^{5}$   |
| 160                     | 4.3 × 10 <sup>-4</sup> | -9          | $3.9 \times 10^{5}$ | $1.4 \times 10^{-3}$   | -14         | $6.0 \times 10^5$     |
| 200                     | 3.9 × 10 <sup>-4</sup> | -6          | $5.7 \times 10^6$   | $4.4 \times 10^{-3}$   | -6          | $7.5 \times 10^5$     |
| 250                     | 8.6 × 10 <sup>-4</sup> | -1          | $1.7 \times 10^5$   | $7.4 \times 10^{-4}$   | -12         | $1.6 \times 10^6$     |
| 300                     | 5.0 × 10 <sup>-4</sup> | -1          | $1.2 \times 10^6$   | 5.3 × 10 <sup>-5</sup> | -20         | 1.1 × 10 <sup>5</sup> |

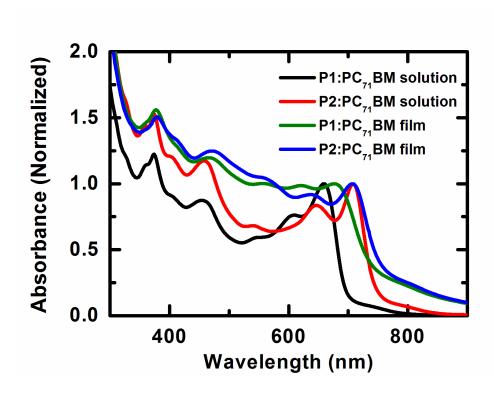



Figure S4. UV-Vis absorption spectra of P1:PC<sub>71</sub>BM and P2:PC<sub>71</sub>BM in solution and film.