Electronic Supplementary information for

A new CaCO₃-template method to synthesize nanoporous manganese oxides hollow structures and their transformation to high-performance LiMn₂O₄ cathode for Lithium-ion batteries

By Chunyu Zhu, Genki Saito, Tomohiro Akiyama*

[*] Prof. T. Akiyama, Dr. C. Zhu, Mr. G. Saito
Center for Advanced Research of Energy & Materials, Hokkaido
University, Sapporo 060-8628, Japan.
E-mail: <u>takiyama@eng.hokudai.ac.jp</u> (Tomohiro Akiyama)

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is $\[mathbb{C}$ The Royal Society of Chemistry 2013

Figure S1. XRD patterns for the coprecipitated carbonates.

Figure S2. SEM images and EDS analysis for the as-prepared carbonates.

(a). S1, MnCO₃;
(b). S2, Mn₃Ca₁(CO₃)₄;
(c). S3, Mn₁Ca₁(CO₃)₂;
(d). S4, Mn₁Ca₂(CO₃)₃.
(e). S5, CaCO₃

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013 Figure S2-(a)

S1, 1:0, MnCO₃

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013

S2, 3:1, Mn₃Ca₁(CO₃)₄

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is C The Royal Society of Chemistry 2013

Figure S2-(c)

S3, 1:1, Mn₁Ca₁(CO₃)₂

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013 Figure S2-(d)

S4, 1:2, Mn₁Ca₂(CO₃)₃

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013 Figure S2-(e)

S5, CaCO₃

Figure S3. XRD patterns for the carbonates after thermal decomposition at 400 °C for 4 h.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013

Figure S4. XRD patterns for the carbonates after the treatment of thermal decomposition at 400 °C for 4 h and HCl wash.

Figure S5. SEM images for the carbonates after thermal decomposition at 400 °C for 4 h and HCl wash.

- (a). S1, from MnCO₃, no HCl wash;
- (b). S2, from Mn₃Ca₁(CO₃)₄;
- (c). S3, from Mn₁Ca₁(CO₃)₂;
- (d). S4, from $Mn_1Ca_2(CO_3)_3$.

S1, from MnCO₃, 400 °C-4h

$\underbrace{ \mathsf{Supplementary Material (ESI) for Journal of Materials Chemistry Among Ca_1 (CO_3)_4, 400 \ ^\circ\text{C-4h, HCl wash} }_{1000} \underbrace{ \mathsf{Supplementary Materials (ESI) for Journal of Materials Chemistry Among Ca_1 (CO_3)_4, 400 \ ^\circ\text{C-4h, HCl wash} }_{1000} \underbrace{ \mathsf{Supplementary Materials (ESI) for Journal of Materials Chemistry Among Ca_1 (CO_3)_4, 400 \ ^\circ\text{C-4h, HCl wash} }_{1000} \underbrace{ \mathsf{Supplementary Materials (ESI) for Journal of Materials Chemistry Among Ca_1 (CO_3)_4, 400 \ ^\circ\text{C-4h, HCl wash} }_{1000} \underbrace{ \mathsf{Supplementary Materials (ESI) for Journal of Materials Chemistry Among Ca_1 (CO_3)_4, 400 \ ^\circ\text{C-4h, HCl wash} }_{1000} \underbrace{ \mathsf{Supplementary Materials (ESI) for Journal of Materials Chemistry Among Ca_1 (CO_3)_4, 400 \ ^\circ\text{C-4h, HCl wash} }_{1000} \underbrace{ \mathsf{Supplementary Materials (ESI) for Journal of Materials Chemistry Among Ca_1 (CO_3)_4, 400 \ ^\circ\text{C-4h, HCl wash} }_{1000} \underbrace{ \mathsf{Supplementary Materials (ESI) for Journal of Materials Chemistry Among Ca_1 (CO_3)_4, 400 \ ^\circ\text{C-4h, HCl wash} }_{1000} \underbrace{ \mathsf{Supplementary Materials (ESI) for Journal of Materials Chemistry Among Ca_1 (CO_3)_4, 400 \ ^\circ\text{C-4h, HCl wash} }_{1000} \underbrace{ \mathsf{Supplementary Materials (ESI) for Journal of Materials Chemistry Among Ca_1 (CO_3)_4, 400 \ ^\circ\text{C-4h, HCl wash} }_{1000} \underbrace{ \mathsf{Supplementary Materials (ESI) for Journal of Materials Chemistry Among Ca_1 (CO_3)_4, 400 \ ^\circ\text{C-4h, HCl wash} }_{1000} \underbrace{ \mathsf{Supplementary Materials (ESI) for Journal of Materials (ESI) for$

Figure S5-(c)

S3, from Mn₁Ca₁(CO₃)₂, 400 °C-4h, HCl wash

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013

S4, from Mn₁Ca₂(CO₃)₃, 400 °C-4h, HCl wash

S2, from Mn₃Ca₁(CO₃)₄, 400 °C-4h, HCl wash

Figure 6. TEM images for the carbonate of Mn₃Ca₁(CO₃)₄ after thermal decomposition at 400 °C for 4 h and HCl wash.

Figure 7. TG curves for the four samples after thermal decomposition at 400 ^oC for 4 h and HCl wash. (a). S1, from MnCO₃, no HCl wash was used; (b). S2, from $Mn_3Ca_1(CO_3)_4$; (c). S3, from $Mn_1Ca_1(CO_3)_2$; (d). S4, from $Mn_1Ca_2(CO_3)_3$. The analysis were carried out under ambient atmosphere at a heating rate of 5 °C/min. 17

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013

Figure S8. XRD patterns for the carbonates after a series of treatment of thermal decomposition at 400 °C for 4 h, HCl wash, and thermal decomposition at 600 °C for 3 h. S1 was obtained by directly decomposition at 600 °C for 3 h.

Figure S9. SEM images for the carbonates after a series of treatment of thermal decomposition at 400 °C for 4 h, HCl wash, and thermal decomposition at 600 °C for 3 h.
(a). S1, from MnCO₃, directly decomposed at 600 °C for 3 h;
(b). S2, from Mn₃Ca₁(CO₃)₄;
(c). S3, from Mn₁Ca₁(CO₃)₂;

(d). S4, from Mn₁Ca₂(CO₃)₃.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is C The Royal Society of Chemistry 2013

S1, from MnCO₃, 600 °C-3h

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A The rest of the mistry 2013 S2, from $Mn_3Ca_1(CO_3)_4$, 400 °C-4h, HCl wash, 600 °C-3h

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A $Mn_1Ca_1(CO_3)_2$, 400 °C-4h, HCl wash, 600 °C-3h

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013

Figure S10. TEM images for the manganese oxide (Mn_2O_3) porous structures obtained from (a). S1, directly from MnCO₃ (b). S2, from Mn₃Ca₁(CO₃)₄; (c). S3, from Mn₁Ca₁(CO₃)₂. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2013

Figure S11. SEM and TEM images for $LiMn_2O_4$ prepared from solid-state reaction of the porous Mn_2O_3 with $LiOH \cdot H_2O$ at 750 °C for 20 h. S1, porous Mn_2O_3 directly from $MnCO_3$

Figure S12. SEM, TEM images and EDS analysis for $LiMn_2O_4$ prepared from solid-state reaction of the porous hollow Mn_2O_3 with $LiOH \cdot H_2O$ at 750 °C for 20 h. S2, porous Mn_2O_3 hollow spheres from $Mn_3Ca_1(CO_3)_4$.

Figure S13. Cycling performance for the porous LiMn₂O₄ hollow spheres.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013

Figure S14. Charge-discharge curves at 1-C rate.

Figure S15. Cycling performance and the charge-discharge curves for the porous $LiMn_2O_4$ hollow spheres (S2) at different C-rates.