Electronic Supplementary Information

Nitrogen and silica co-doped graphene nanosheets for NO₂ gas sensing

Fang Niu^a, Jin-Mei Liu^b, Li-Ming Tao^c, Wei Wang^a*, and Wei-Guo Song^d*

- ^a State Key Laboratory of Applied Organic Chemiatry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
- ^b Institute of Nanoscience and Nanotechnology, Lanzhou University, Lanzhou, Gansu, 730000, China
- ^c State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
- ^d Beijing National Laboratory for Molecular Sciences (BNLMS); Laboratory for Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

wang_wei@lzu.edu.cn; wsong@iccas.ac.cn

Experimental details

Chemicals. 3-Chloropropyltrimethoxysiliane, 1-methylimidazole, and graphite were purchased from J&K Scientific Ltd. (Beijing) and used without further purification. All other reagents were obtained from Sinopharm Chemical Reagent Co., Ltd. and used as received.

Preparation of graphene oxide (GO). The graphene oxide (GO) was prepared from the natural graphite powder using the modified Hummers' method¹. In a typical procedure, 12 g of graphite powder was dispersed into 50 mL of concentrated H₂SO₄ under vigorous stir, and then 10 g of K₂S₂O₈ followed by 10 g of P₂O₅ were added slowly to this suspension. The suspension was then retained at 80 °C for 6 h and the solid was recovered by centrifugation. After washing with water repeatedly, the pre-oxidised graphite was dried over night at T = 110 °C in an oven. The pre-oxidised graphite was then added to 460 ml of concentrated H₂SO₄ which was kept at 0 °C in an ice bath. And then, 60 g of KMnO₄ was added into this suspension slowly under vigorous stirring. After reaction at 35 °C for 2 h, 1 L of deionised water was added slowly and the temperature was kept below 50 °C during this process. After stirring for 2 h, another 3 L of deionised water followed by 50 mL of H₂O₂ (30 %) were added into this suspension. After that, the obtained light yellow solution was stirred for 1 day and centrifuged, washed with 5 L of 10% HCl, and with 5 L of deionised water, and dried at 60 °C in an vacuum oven.

Preparation of graphene oxide-ionic liquid (GO-IL) composite. The ionic liquid precursor **3** was synthesized according to the literature². 6 mmol of 3-chloropropyltrimethoxysiliane and 6 mmol of 1-methylimidazole were mixed together with 20 ml of dried toluene firstly. The ionic liquid precursor **3** was obtained after stirring the above solution at 110 °C for 12 h. After that, the yellow-coloured ionic liquid precursor **3** was washed with diethyl ether for five times and dried at 40 °C in a vacuum oven for further use. The graphene oxide-ionic liquid (GO-IL) composite was synthesized via grafting the as-obtained ionic liquid precursor **3** with the hydroxyl group on the surface of GO. In a typical procedure, 1 mmol of ionic liquid precursor **3** was added into 10 ml of 3 mg/ml GO suspension in DMF. Then, this suspension was heated to 120 °C and kept for 24 h under vigorous stirring. The as-synthesized GO-IL was then recovered by centrifugation, washed with ethanol five times, and dried at 80 °C for further use.

Preparation of nitrogen and silica co-doped graphene nanosheets (NSi-GNS). The nitrogen and silica co-doped graphene nanosheets (NSi-GNS) were prepared through the high-temperature annealing of GO-IL under Ar atmosphere. In a typical process, 100 mg of GO-IL was put in a quartz vessel and heated to 400 °C with a temperature elevating rate of 20 °C/min, and kept at 400 °C for 30 min under Ar atmosphere. The other NSi-GNS samples annealed at 600 °C and 800 °C were also prepared in the control experiments, using the same temperature elevating rate under Ar atmosphere (25 ml/min). These as-prepared NSi-GNSs are donated as NSi-GNS-400,

NSi-GNS-600, and NSi-GNS-800 in this work, respectively.

Preparation of rGO. For comparison, rGO was also prepared by the high-temperature annealing of GO at 400 °C under Ar atmosphere (25 ml/min).

Characterisation. The as-prepared NSi-GNS samples were characterised by X-ray diffraction (XRD, BRUKER D/max-2500), X-ray photoelectron spectroscopy (XPS, VGESCALAB 220i-XL), Fourier Transform Infrared spectroscopy (FTIR, BRUKER, TENSOR-27), Scanning Electron Microscopy (SEM, Hitachi S-4800), and Laser Raman spectroscopy (Raman, HORIBA Jobin Yvon LabRAM HR800). A CHI 660D electrochemical workstation was used to measure the resistance of the NSi-GNS layer between the Ag electrodes under air atmosphere and in NO₂ gas sensing process.

Gas sensing test. To measure the NO₂ gas sensing property of NSi-GNS samples, two parallel Ag electrodes (4 mm × 5 mm) with a distance of about 2 mm were sputtered onto a glass substrate (12 mm × 5 mm). 10 mg of NSi-GNS powder was dispersed into 0.5 ml of ethanol under ultrasonication to form slurry, and this slurry was then dropped between the two Ag electrodes on the glass substrate. A thin NSi-GNS layer between the two Ag electrodes was formed after the evaporation of ethanol. The as-prepared sensor was then introduced in an airtight chamber for the sensing test and the introduced sensor was allowed to carry out electric measurement in a controlled atmosphere. Electrical measurements were carried out at room temperature under air atmosphere and NO₂ with various concentrations. The sensor resistance was measured by a CHI 660D electrochemical workstation in chronoamperometry with a constant voltage of 10 V. The sensor response to NO₂ is defined as Response = (R_{NO2}-R_{Air})/R_{Air} × 100%, where the R_{Air} is the baseline electrical resistance of the sensor in clean Air, and, the R_{NO2} is the resistance in NO₂ with different concentrations.

	С	0	Cl	Si	Ν
GO	40.88 %	59.12 %	-	-	-
GO-IL	51.43 %	21.04 %	6.70 %	10.79 %	4.45 %
NSi-GNS-400	82.55 %	9.62 %	-	5.42 %	2.40 %
NSi-GNS-600	78.58 %	12.48 %	-	6.59 %	2.35 %
NSi-GNS-800	76.74 %	13.70 %	-	7.60 %	1.97 %

Table S1. The C, O, Cl, N and Si contents in GO, GO-IL, and NSi-GNSs calculated from the corresponding XPS spectra.

Figure S1. High resolution C 1s XPS spectra of (a) GO, (b) GO-IL, (c) NSi-GNS-400, (d) NSi-GNS-600, and (e) NSi-GNS-800, respectively.

Figure S2. High resolution N 1s XPS spectra of (a) GO-IL, (b) NSi-GNS-400, (c) NSi-GNS-600, and (d) NSi-GNS-800, respectively.

Figure S3. High resolution Si 2p XPS spectrum of GO-IL.

Figure S4. Raman spectra of GO, GO-IL, and NSi-GNSs annealed at 400 °C, 600 °C, and 800 °C. The Raman spectra of the as-prepared GO, GO-IL, and NSi-GNSs were collected at an excitation wavelength of 532 nm under ambient conditions. In the Raman spectrum of GO, the peaks at 1351 and 1601 cm⁻¹ could be attributed to the D and G bands of GO, respectively. The D band refers to the structural defects and partially-disordered structures, while the G band refers to the E_{2g} vibration mode of sp² domain, defining the degree of graphitization. After grafting of ionic liquid precursor **3** onto GO, the D and G bands appeared at the same location while the I_D/I_G increased from 1.36 to 1.60 compared to GO. It indicated an increasing disorder of GO-IL. A red shift of G band can be seen in the NSi-GNSs' Raman spectra, which is attributed to the N-doping. In addition, the intensity ratio of I_D/I_G from NSi-GNSs

increased with the increased annealing temperature, suggesting that the incorporation of N and Si atoms into the graphene networks would result in the severe disorder.

Figure S5. XRD spectra of GO, GO-IL, and NSi-GNSs annealed at 400, 600, and 800 °C, respectively. A strong diffraction peak located at $2\theta = 10.4^{\circ}$ and a weak and wide signal appeared at $2\theta = 21.1^{\circ}$ in the XRD spectrum of GO. However, the diffraction peaks moved to $2\theta = 26.1^{\circ}$ in GO-IL and NSi-GNS samples. Since the bigger 2 θ refers to the narrower interlayer distance of GO, the gradually-increased 2 θ value indicates that the post-treatment with ionic liquid precursor **3** and the high-temperature annealing would lead to the partial reduction of GO, and thus result in a decreased interlayer distance.

Figure S6. The SEM images of (a) GO on a silica substrate; (b) rGO annealed at 400 °C, and NSi-GNS samples annealed at (c) 400, (d) 600, and (e) 800 °C on the sensor electrodes. The SEM images of (f) the sensor fringe with both sample and Ag electrode exposed and (g) the bare sensor electrodes are shown.

Figure S7. I-V curves of the gas sensors prepared with NSi-GNSs annealed at a) 400, b) 600, c) 800, and with rGO annealed at d) 400 °C.

Figure S8. The response results of NSi-GNS-400 to 21 ppm of NO_2 obtained from different sensors. The similar response values suggest the excellent reproducibility of the sensors.

Figure S9. The response of rGO to 21 ppm of NO₂.

Figure S10. The response of (a) NSi-GNS-600 and (b) NSi-GNS-800 to 21 ppm of NO₂. A response value of -11.3% and -1.88% were observed for NSi-GNS-600 and NSi-GNS-800 in 21 ppm of NO₂, respectively.

References

- 1. W. S. Hummers Jr. and R. E. Offeman, *Journal of American Chemical Society*, 1958, **80**, 1339-1339.
- 2. X. X. Zheng, S. Z. Luo, L. Zhang and J. P. Cheng, *Green Chemistry*, 2009, **11**, 455-458.