Mesoporous isocyanurate-containing organosilica-alumina composites and their thermal treatment in nitrogen for carbon dioxide sorption at elevated temperature

Chamila Gunathilake, Mahinda Gangoda and Mietek Jaroniec*

Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA

Sample	ICS (mmol)	Al-N (mmol)	Al-I (mmol)	AP (mmol)
Pure Al	-	0.0110	-	-
Al-N-ICS10	0.0011	0.0099	-	-
Al-N-ICS10*	0.0011	0.0099	-	-
Al-N-ICS20	0.0022	0.0088	-	-
Al-N-ICS20*	0.0022	0.0088	-	-
Al-N-ICS30	0.0033	0.0077	-	-
Al-N-ICS30*	0.0033	0.0077	-	-
Al-N-ICS50	0.0055	0.0055	-	-
Al-N-ICS50*	0.0055	0.0055	-	-
Al-N-ICS80	0.0088	0.0022	-	-
Al-N-ICS80*	0.0088	0.0022	-	-
Al-0.1(N/I)-ICS10	0.0011	0.0009	0.0090	-
Al-0.1(N/I)-ICS10*	0.0011	0.0009	0.0090	-
Al-1(N/I)-ICS10	0.0011	0.00495	0.00495	-
Al-1(N/I)-ICS10*	0.0011	0.00495	0.00495	-
Al-10(N/I)-ICS10	0.0011	0.0090	0.0009	-
Al-10(N/I)-ICS10*	0.0011	0.0090	0.0009	-
Al-0.1(N/I)-ICS20	0.0022	0.0008	0.0080	-
Al-0.1(N/I)-ICS20*	0.0022	0.0008	0.0080	-
Al-1(N/I)-ICS20	0.0022	0.0044	0.0044	-
Al-1(N/I)-ICS20*	0.0022	0.0044	0.0044	-
Al-10(N/I)-ICS20	0.0022	0.0080	0.0008	-
Al-10(N/I)-ICS20*	0.0022	0.0080	0.0008	-
Al-N-ICS5-AP5	0.00055	0.0099	-	0.00055
Al-N-ICS5-AP5*	0.00055	0.0099	-	0.00055
Al-N-ICS10-AP10	0.0011	0.0088	-	0.0011
Al-N-ICS10-AP10*	0.0011	0.0088	-	0.0011

Table S1. Amounts of the aluminum (Al-N, Al-I) and silica (ICS and AP) precursors used in synthesis.

Sample	$\mathbf{S}_{\mathrm{BET}}$	V _{sp}	W _{KJS}	V_{mi}
	(m^2/g)	(cm^3/g)	nm	(cm^3/g)
Al-N-ICS10*h	336	0.87	10.0	0.02
Al-N-ICS30*h	294	0.45	5.5	0.02
Al-N-ICS80*h	295	0.25	2.7	0.02

Table S2. N₂ adsorption analysis for alumina-silica composites thermally treated at 700 ⁰C.

 S_{BET} - specific surface area calculated from adsorption data in relative pressure range of 0.05-0.20; V_{sp} - single point pore volume calculated at a relative pressure of ~0.98; w_{KJS} - pore width calculated at the maximum of PSD using improved KJS method; V_{mi} – micropore volume estimated by α_s -plot method.

Table S3. Room temperature (25 °C) CO_2 adsorption obtained at 1 bar pressure for alumina-organosilica composites thermally treated at 300 °C.

Sample	n _{CO2} (mmol/g)
Al-N-ICS10*	0.96
Al-N-ICS30*	0.98
Al-N-ICS80*	0.95

 n_{CO2} - number of moles of CO_2 adsorbed per gram of the sample.

Table S4. CO₂ desorption, TGA and elemental analysis data for the alumina-silica composites studied.

Sample	n _{CO2} (mmol/g)	$(10^3 n_{CO2}/S_{BET})$ (mmol/m ²)	Nitrogen content (mmol/g)	Carbon (%)	Al:Si ratio
Pure alumina*h Al-N-ICS10*h Al-N-ICS20*h Al-N-ICS30*h Al-N-ICS50*h Al-N-ICS80*h	0.55 0.58 0.95 1.12 1.63 2.22	- 1.39 2.57 3.06 4.91 6.87	- 0.88 1.09 2.21 3.89 4.73	- 5.79 7.82 12.71 19.27 26.56	9:1 9:1 8:2 8:2 7:3
Al-10(N/I)-ICS10*h Al-10(N/I)-ICS20*h	0.81 0.78	2.62 3.01	1.85 2.49	10.28 12.89	7:3 5:5
Al-N-ICS5-AP5*h Al-N-ICS10- AP10*h	1.19 0.76	4.28 5.76	2.30 1.16	11.74 13.17	5:5 2:8

 n_{CO2} - number of moles of CO₂ adsorbed per gram of the sample; nitrogen content was calculated using N% obtained by elemental analysis for the samples heated in flowing nitrogen up to 700 °C; carbon percentage was obtained by elemental analysis for the samples heated in flowing nitrogen up to 700 °C.

Figure S1. TG curves for alumina-silica composites with isocyanurate bridging groups for extracted-thermally treated (*) samples in flowing nitrogen at 300 °C.

Figure S2. Extracted and extracted-thermally treated in N_2 at 300 °C (*) samples synthesized by using aluminum nonahydrate (Al-N), isocyanurate (ICS) and aminopropyl (AP) organosilanes.

Figure S3. Nitrogen adsorption isotherms (left panel) and the PSD curves (right panel) for extracted and extracted-thermally treated in N_2 at 300 °C (*) samples obtained using Al-N, Al-I and ICS precursors; all isotherm and PSD curves are shifted by 200 cm³STP/g and 0.06 cm³/g, respectively.

Figure S4. N₂ adsorption isotherms and the PSD curves (inset) for extracted and extracted-thermally treated in N₂ at 300 $^{\circ}$ C (*) samples prepared by using Al-N, ICS and AP precursors.

Figure S5. α_s-plots for a) Al-N-ICS10*, b) Al-N-ICS30*, and c) Al-N-ICS80*.

Figure S6. Wide angle XRD profiles for the alumina-silica composites thermally treated up to 700 °C.

Figure S7. ¹H- ¹³C CP/MAS NMR spectrum of the Al-10(N/I)-ICS-10* sample.

Figure S8. ¹H-²⁹Si-MAS NMR spectra of Al-N-ICS10*, Al-N-ICS20*and Al-N-ICS5-AP5*.

Figure S9. ²⁷Al-MAS NMR spectra of Al-N-ICS10*, Al-N-ICS20*and Al-N-ICS5-AP5*.

Figure S10. CO_2 desorption profiles for the Al-N-ICS80*h and Al-N-ICS50*h samples exposed to CO_2 at 120 °C and for Al-N-ICS50*h-B without passing CO_2 .