Electronic Supplementary Information (ESI)

A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction

Duck Hyun Youn^a, Ganghong Bae^a, Suenghoon Han^a, Jae Young Kim^a, Ji-Wook Jang^a, Hunmin Park^a, Sun Hee Choi^b, and Jae Sung Lee^{*,a}

^aSchool of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science & ¹⁰ Technology (UNIST), Ulsan 689-798 Korea ^bDepartment of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 Korea. ^cBeamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 790-784 Korea

15

E-mail: jlee1234@unist.ac.kr

Synthesis of TMNs by urea-glass route

Five TMNs were synthesized by urea-glass route. The 1g of metal chloride precursor was dispersed in 2.53ml of ethanol under stirring. This reaction should be carried out in the hood because the metal precursor reacts with ethanol vigorously (especially TiCl₄), releasing HCl vapor. After clear solution ⁵ was obtained, appropriate amount of urea, as a nitrogen source instead of NH₃ gas, was added to the solution (Table S1). After 1h stirring, a viscous metal-urea complex was moved to alumina boat and calcined in a tubular furnace under N₂ with a flow rate of 100 sccm. Detailed heat treatment conditions were shown in Table S1. Only for Ta₃N₅, the maximum temperature was 700°C.

In case of NbN, passivation process is required prior to taking out the sample from the furnace to ¹⁰ prevent rapid oxidation of the catalyst surface. Without passivation process, NbN catalyst burned like charcoal in the atmospheric condition. Passivation was performed using mixed gas consists of 1% O_2 /He gas and pure N2 gas after the furnace cooled down to room temperature. At first, 10 sccm of 1% O_2 /He and 30 sccm of N₂ flowed through the furnace for 10 minutes. During the next 10 minutes, 20 sccm of 1% O_2 /He and 20 sccm of N₂ flowed. In this manner, 30 sccm of 1% O_2 /He and 10 sccm of N₂ ¹⁵ passed the furnace followed by 40 sccm of 1% O_2 /He without N₂.

Precursor	urea (mg)	R ^{a)}	Heat treatment condition	Post treatment
MoCl ₅	220	1		Х
WCl ₄	184	1	750℃	Х
NbCl ₅	1509	5	RT $3h45m \rightarrow 4 h$	\bigcirc (passivation)
TiCl ₄	1583	5		х
TaCl ₅	1111	9	Max. Temperature: 700 ℃	Х

Table S1. Detailed synthetic conditions of five different TMNs.

^{a)} R: molar ratio of urea to metal precursor

5

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2013

5

Fig. S1. a) XRD patterns of synthesized TMNs and SEM images of b) Mo_2N , c) W_2N , d) NbN, e) Ta₃N₅, and f) TiN.

Fig. S2. a) XRD patterns of synthesized TiN-based catalysts. Vertical lines indicated reference pattern of TiN (JCPDS No. 38-1420), b) Magnified XRD patterns taken from the areas marked with red circle in a).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

5

Fig. S3. Enlarged images of insets in Fig. 4. a) TiN, b) TiN/GR, c) TiN/CNT, and d) TiN/CNT-GR.

Fig. S4. SEM images of a) TiN/CNT and b) TiN/CNT-GR focused on morphology of CNT.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2013

Fig. S5. Low magnification TEM images of a) TiN/GR, b) TiN/CNT, and

c) TiN/CNT-GR.

5

Fig. S6. a) X-ray absorption near edge structure (XANES) spectra of Ti K-edge, b) Fourier-transforms of Ti K-edge EXAFS for supported and bare TiN catalysts.

Table S2. Structural parameters calculated from Ti K-edge EXAFS fits for supported and bare TiN

NPs.

Catalysts	N _{Ti-N} ^a	N _{Ti-Ti} ^{a)}	R _{Ti-N} ^{b)} (Å)	R _{Ti-Ti} ^{b)} (Å)	σ ² _{Ti-N} ^{c)} ×10 ³ (Å ²)	σ ² _{Ti-Ti} ^{c)} ×10 ³ (Å ²)	R factor ^{d)}
TiN`	3.4	5.4	2.111	2.986	7.4	6.4	0.0293
TiN/GR	3.3	4.6	2.105	2.978	10.0	8.1	0.0257
TiN/CNT	3.8	4.9	2.103	2.974	12.1	8.6	0.0262
TiN/CNT-							
GR	3.6	5.2	2.104	2.976	10.6	9.0	0.0216

^{a)}coordination number (max. ±0.5); ^{b)}bond distance (max. ±0.003), ^{c)}Debye-Waller factor (max.

 $_{\rm 5}$ ±0.002); d)a sum-of-squares measure of the fractional misfit.

Table S3. The activities of nitride-based materials for ORR.

	Onset potential	Activity	
Cotolyst	- · · · I · · · · · ·		Deference
Catalyst		3	Reference
	(V vs RHE)	@ $0.7V (mA/cm^2)$	
Mo ₂ N/C	07	0	14
1010210/0	0.7	0	11
W_2N/C	0.6	0	15
TON	0.9	0.005	7
TaON	0.8	-0.003	/
Zr.Nb.Ta-CNO	above 0.85	-0.1	13
		011	10
TiN/CB	0.84	-0.6	12
TN/CNT CD	0.92	1 4	magant weat
TIIN/CINT-GR	0.85	-1.4	present work

Fig. S7. a) LSV results of synthesized TiN-based catalysts with commercial Pt/C (E-TEK) catalyst, b) LSV results of TiN/CNT-GR catalyst before and after 500 cycles of potential sweep between 0.6~1.0 V at 50mVs⁻¹.

Fig. S8. LSV results of a) TiN, b) urea/CNT-GR (nitrogen-doped carbon), and c) physically mixed TiN with CNT-GR (TiN-CNT-GR) in 0.5 M H₂SO₄. (Dotted lines under O₂; solid lines under N₂.)

Fig. S9. LSV results of a) TiN, b) urea/CNT (nitrogen doped carbon), and c) physically mixed TiN with CNT (TiN-CNT) in 0.5 M H₂SO₄. (Dotted lines under O₂; solid lines under N₂.)

Fig. S10. LSV results of a) TiN, b) urea/GR (nitrogen doped carbon), and c) physically mixed TiN with GR (TiN-GR) in 0.5 M H₂SO₄. (Dotted lines under O₂; solid lines under N₂.)

