Electronic Supplementary Information

An improved Stöber method towards uniform and monodisperse Fe₃O₄@C nanospheres

Xue-Bin Zhang^a, Hong-Wu Tong^a, Shao-Min Liu^a*, Guo-Ping Yong^a and Ya-Feng Guan^{a, b}*

^aDepartment of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China. Fax&Tel: 0551-3492147; E-mail: <u>liusm@ustc.edu.cn</u>; ^bLaboratory of Instrumentation and Analytical Chemistry, Key Lab of Separation Science for Analytical Chemistry of CAS, Dalian Institute of Chemical Physics, CAS, Dalian, Liaoning 116023, P.R. China. E-mail: <u>guanyafeng@dicp.ac.cn</u>; Fax: +86-0411-84379590, Tel: +86-0411-84379660.

Figure S1. TGA curve of the Fe₃O₄@polymer sample.

Figure S2. The EDS spectrum of Fe₃O₄@C sample.

Figure S3. The SEM images of Fe_3O_4 @polymer prepared without citrate groups outside Fe_3O_4 surface.

Figure S4. The SEM images of Fe₃O₄@polymer prepared in water ethanol mixed solution (water:ethanol=7:3).

Figure S5 The room temperature hysteresis curves of Fe_3O_4 , and Fe_3O_4 @C prepared with different content of resorcinol and formaldehyde.

Figure S6 Photographs of Fe₃O₄@C magnetic separation phenomenon.