Supplementary Information for

Controlled Decationization of X Zeolite: Mesopore Generation within Zeolite Crystallites for Bulky Molecular Adsorption and Transformation

Songhyun Lee, ‡ Hyeonbin Kim^{\ddagger} and Minkee Choi*

Table of Contents

- Fig. S1 TEM image of NaX zeolite
- Fig. S2 TEM image of *decatX*-0.51 sample
- Fig. S3 TEM image of HCl-treated NaX sample
- Fig. S4 TEM image of Na₂H₂EDTA-treated NaX sample
- **Fig. S5** Ar adsorption-desorption isotherms (87 K) of the *decatX*-0.51, Na₂H₂EDTA-treated NaX and HCl -treated NaX
- **Fig. S6** XRD patterns of the fully NH₄⁺-exchanged X zeolite after the thermal treatment at various temperatures
- **Fig. S7** Adsorption isotherms of basic dyes on NaX, *decatX*-0.51, Na₂H₂EDTA-treated NaX and HCl -treated NaX at 298 K. (a) Methylene blue and (b) crystal violet
- Fig. S8 Conversion of ethyl cyanoacetate in Knoevenagel condensation with 10 wt% K₂O/KX, 10 wt% K₂O/decatX-0.51, 10 wt% K₂O/KX-Na₂H₂EDTA and 10 wt% K₂O/KX-HCl as a catalyst

Fig. S1 TEM image of NaX zeolite

Fig. S2 TEM image of *decatX*-0.51 sample

Fig. S3 TEM image of HCl-treated NaX sample

Fig. S4 TEM image of Na₂H₂EDTA-treated NaX sample

Fig. S5 Ar adsorption-desorption isotherms (87 K) of the *decatX*-0.51, Na₂H₂EDTA-treated NaX and HCl -treated NaX

Fig. S6 XRD patterns of the fully NH_4^+ -exchanged X zeolite after the thermal treatment at various temperatures

Fig. S7 Adsorption isotherms of basic dyes on NaX, *decatX*-0.51, Na₂H₂EDTA-treated NaX and HCl- treated NaX at 298 K. (a) Methylene blue and (b) crystal violet

Fig. S8 Conversion of ethyl cyanoacetate in Knoevenagel condensation with 10 wt% K₂O/KX, 10 wt% K₂O/*decatX*-0.51, 10 wt% K₂O/KX-Na₂H₂EDTA and 10 wt% K₂O/KX-HCl as a catalyst. Chemically leached NaX zeolite with Na₂H₂EDTA and HCl were ion-exchanged with excessive amount of K⁺ ion (3 g samples were ion-exchanged twice in 200 mL of 0.3 M KNO₃). 1 g of K⁺- exchanged samples were impregnated with 3 M of KNO₃ to achieve 10 wt% K₂O. The impregnated samples were dried at 373 K for 24 h and calcined in a plug-flow reactor under flowing dry air (250 mL min⁻¹) at 773 K (temperature ramp: 2 K min⁻¹) for 3 h. The resultant samples were designated as 10 wt% K₂O/KX-Na₂H₂EDTA and 10 wt% K₂O/KX-HCl, respectively.