Electronic supplementary information (ESI)

High Energy and Power Density TiO₂ Nanotube Electrodes

for 3D Li-ion Microbatteries

Wei Wei^{*a}, Gabriel Oltean^a, Cheuk-Wai Tai^b, Kristina Edström^a, Fredrik Björefors^a and Leif Nyholm^a

a Department of Chemistry - Ångström Laboratory, Uppsala University Box 538, SE-751 21 Uppsala, Sweden b Department of Materials and Environmental Chemistry, Stockholm University SE-106 91 Stockholm, Sweden

*Corresponding author E-mail: <u>wei.wei@kemi.uu.se</u> (Dr. W.Wei)

S1 Anodic formation of self-organized oxide nanotubes

Self-organized oxide tube arrays or pore arrays can be obtained by an anodization process involving some transition metals, such as Ti, Nb, Ta, Zr. When these metals are exposed to a sufficiently high anodic potential in an electrochemical cell (as that shown in Figure S1a), an oxidation reaction (i)

$$M + x H_2O \rightarrow MO_x + 2x H^+ + 2x e^-$$
(i)

will be initiated and an oxide layer will form on the metal substrate. If fluoride ions are added to the electrolyte, a competing chemical dissolution reaction (ii) will be established (as illustrated in Figure S1b).

$$MO_x + yF + 2xH^+ \rightarrow [MF_y]^{2x-y} + xH_2O$$
 (ii)

The initial stage (stage I in Figure S1c) of the oxide nanotube formation is the growth of a compact oxide layer on the metal substrate (see reaction (i)). Due to the random chemical

etching by fluoride ions, irregular tiny pores are then formed which penetrate the initial compact oxide (see stage II in Figure S1c). Due to the competition between oxide formation and chemical dissolution at the different interfaces, a more ordered oxide nanotube/nanopore layer starts to form and continuously grows into the metal substrate (see stage III in Figure S1c). .^[1] The initial layer with some irregular pore/tube often remains as remnants on the nanotube tops, as shown in Figure S2a and S2b.

The two-step anodization approach employed in this work is an effective method to form highly self-ordered TiO₂ nanotubes with well-defined top morphologies.^[2] In this process, the relative long-term anodization during the first step yield TiO₂ nanotubes and an underlying textured substrate with an arrangement of self-ordered dimples. By strong sonication in deionized water, the formed TiO₂ nanotubes can be detached and the textured substrate exposed. In the second anodization step, highly self-ordered TiO₂ nanotube arrays with a well-defined nano-ring top layer can be grown based in the dimples arrangement on the substrate resulting from the initial anodization step.

Figure S1. (a) Schematic set-up for anodization experiments. (b) Schematic representation of the anodization of Ti in fluoride containing electrolytes. (c) Schematic representation of the typical sequence of anodic tube formation.^[1]

Figure S2. SEM micrograph of annealed, one-step anodized TiO_2 nanotube electrode (a) and (b) before and (c) and (d) after battery cycling tests, showing (a) and (c) top-views and (b) and (d) cross-sectional views. The insets in (a) and (c) show high magnification top-views whereas in (b) show a cross-sectional view at tube top and the tube lengths. (e) Optical images of the TiO_2 nanotube electrodes before (left) and after (right) battery cycling.

Figure S3. (a) Thermogravimetric analysis (TGA) curve for an as-prepared TiO_2 nanotube electrode. (b) Charge and discharge curves for the 1st, 2nd, 3rd and 100th cycles for the as-prepared, two-step anodized TiO_2 nanotube electrode, recorded at a rate of C/10.

Table S4. Comparison of the performance of the present anatase nanotube electrode based cell

 with those of other microbattery systems

Ref.	Active material	Areal capacity	cycling stablity*	Areal Capacity
		at low rate		at high rate
Our	TiO ₂ nanotube	465 µAh cm ⁻²	94% after 500 cycles	222 μAh cm ⁻²
Result	electrode	at 50 µA cm ⁻²		at 2.5 mA cm ⁻²
[3]	Li/LiPON/LiCoO2	133 μ Ah cm ⁻² at	capacity was stable	120 μ Ah cm ⁻² at
	2D thin-film	33 μ A cm ⁻²	over 100 cycles	0.333 mA cm^{-2}
[4]	LiCx/PVDF/MoO _y S _z	$\sim 1000 \ \mu Ah \ cm^{-2}$	60% after 200 cycles	$600 \ \mu Ah \ cm^{-2} \ at$
	3D structures	at 200 μ A cm ⁻²		2 mA cm^{-2}
[5]	Fe ₃ O ₄	340 μ Ah cm ⁻² at	"capacity was sustained	$260 \ \mu Ah \ cm^{-2} \ at$
	nanoarchitectures	$23 \ \mu A \ cm^{-2}$	over 100 cycles"	2.9 mA cm^{-2}
[6]	TiO ₂ 2D	13 μ Ah cm ⁻² at	unkown	6.6 μ Ah cm ⁻² at
	thin-film	$2.6 \ \mu A \ cm^{-2}$		0.33 mA cm^{-2}
[7]	PPYDBS/carbon	$35.1 \ \mu Ah \ cm^{-2}$	unknown	31.6 μ Ah cm ⁻²
	microarrays	at 7 μ A cm ⁻²		at 0.07 mA cm ⁻²
[8]	TiO_2	11.2 μ Ah cm ⁻²	85% after 50 cycles	$3.92 \ \mu Ah \ cm^{-2}$
	nanoarchitectures	at 1 μ A cm ⁻²		at 0.1 mA cm ⁻²
[9]	TiO ₂ nanotube	77 μ Ah cm ⁻² at	71% after 50 cycles	33 μ Ah cm ⁻² at
	electrode	$5 \ \mu A \ cm^{-2}$		0.1 mA cm^{-2}
[10]	TiO ₂ nanotube	40 μ Ah cm ⁻² at	95.7% after 100 cycles	21 μ Ah cm ⁻² at
	electrode	$173 \ \mu A \ cm^{-2}$		8.6 mA cm^{-2}
[11]	LiCoO ₂	120 μ Ah cm ⁻² at	88% after 65 cycles	81.6 μ Ah cm ⁻²
	nanoarchitectures	$12 \ \mu A \ cm^{-2}$		at 0.96 mA cm ⁻²
[12]	Fe ₂ O ₃ nanowire	240 μ Ah cm ⁻² at	50% after 45 cycles	$60 \ \mu Ah \ cm^{-2} \ at$
	/TiO ₂ nanotube	$12.5 \ \mu A \ cm^{-2}$		0.05 mA cm^{-2}
[13]	SnO nanowire /	119 μ Ah cm ⁻² at	85% after 50 cycles	66.5 μ Ah cm ⁻²
	TiO ₂ nanotube	$50 \ \mu A \ cm^{-2}$		at 0.1 mA cm ⁻²
[14]	PMMA-PEO /	119 μ Ah cm ⁻² at	93% after 50 cycles	50 μ Ah cm ⁻² at
	TiO ₂ nanotube	$5 \mu\text{A cm}^{-2}$		0.025 mA cm^{-2}
[15]	TiO ₂ Nanowire	170 μ Ah cm ⁻² at	100% after 600 cycles	$60 \mu\text{Ah cm}^{-2}$ at
	Network	$16 \mu A cm^{-2}$		0.8 mA cm^{-2}
[16]	SnO_2/α - Fe_2O_3	344 μ Ah cm ⁻² at	85% after 50 cycles	unknown
	nanotube array	$300 \ \mu A \ cm^{-2}$		
[17]	TiO ₂ nanotube	136 μ Ah cm ⁻² at	93% after 100 cycles	120 μ Ah cm ⁻² at
	electrode	$100 \ \mu A \ cm^{-2}$		1 mA cm^{-2}
[18]	V ₂ O ₅ nanocoating	37 μ Ah cm ⁻² at	100% after 35 cycles	$25 \mu\text{Ah cm}^{-2}$ at
		$9 \ \mu A \ cm^{-2}$		0.09 mA cm^{-2}
[19]	LiFePO ₄ /RVC	$325 \mu\text{Ah cm}^{-2}$ at	98% after 43 cycles	225 μ Ah cm ⁻² at
	electrodes	65 μ A cm ⁻²		1.5 mA cm^{-2}

* Capacity remaining after x cycles comparted to 2nd cycles

References

- 1 P. Roy, S. Berger and P. Schmuki, Angew. Chem. Int. Ed., 2011, 50, 2904.
- 2 G. G. Zhang, H. T. Huang, Y. H. Zhang, H. L. W. Chan and L. M. Zhou, *Electrochem. Commun.* 2007, **9**, 2854.
- 3 G. Nagasubramanian and D. H. Doughty, J. Power Sources, 2004, 136, 395.
- 4 M. Nathan, D. Golodnitsky, V. Yufit, E. Strauss, T. Ripenbein, I. Shechtman, S. Menkin and E. Peled, *J. Microelectromech. Syst.*, 2005, **14**, 879.
- 5 P. L. Taberna, S. Mitra, P. Poizot, P. Simon and J.M. Tarascon, Nat. Mater. 2006, 5, 567.

6 M.J. Lindsay, M.G. Blackford, D.J.Attard, V. Luca, M. Skyllas-Kazacos and C.S. Griffith, *Electrochim. Acta*, 2007, **52**. 6401.

- 7 H.S. Min, B. Y. Park, L. Taherabadi, C. Wang, Y. Yeh, R. Zaouk, M. J. Madou and B. Dunn,
- J. Power Sources, 2008, 178, 795.
- 8 S. K. Cheah, E. Perre, M. Rooth, M. Fondell, A. Hårsta, L. Nyholm, M. Boman, J. Lu, P. Simon and K. Edström, *Nano Lett.*, 2009, **9**, 3230.
- 9 G. F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J. L. Tirado and P. Knauth, *Chem. Mater.*, 2009, **21**, 63.
- 10 H.T. Fang, M. Liu, D.W. Wang, T. Sun, D.S. Guan, F. Li, J. Zhou, T.K. Sham and H.M. Cheng, *Nanotechnology*, 2009, **20**, 225701.
- 11 M. M. Shaijumon, E. Perre, B. Daffos, P.L. Taberna, J.M. Tarascon and P. Simon, *Adv. Mater.*, 2010, **22**, 4978.
- 12 G. F. Ortiz, I. Hanzu, P. Lavela, J. L. Tirado, P. Knauth and T. Djenizian, *J. Mater. Chem.*, 2010, **20**, 4041.
- 13 T. Djenizian, I. Hanzu and P. Knauth, J. Mater. Chem., 2011, 21, 9925.
- 14 N. A. Kyeremateng, F. Dumur, P. Knauth, B. Pecquenard and T. Djenizian, *Electrochem*. *Commun.* 2011, **13**, 894.
- 15 W. Wang, M. Tian, A. Abdulagatov, S. M. George, Y.C. Lee and R. Yang, *Nano Lett.*, 2012, **12**, 655.
- 16 W. Zeng, F. Zheng, R. Li, Y. Zhan, Y. Li and J. Liu, Nanoscale, 2012, 4, 2760.

17 W.H. Ryu, D.H. Nam, Y.S. Ko, R.H. Kim and H.S. Kwon, *Electrochim. Acta*, 2012, **61**, 19.

18 K. Gerasopoulos, E. Pomerantseva, M. McCarthy, A. Brown, C. Wang, J. Culver and R. Ghodssi, *ACS Nano*, 2012, **6**, 6422.

19 M. Roberts, A. F. Huang, P. Johns and J. Owen, J. Power Sources, 2013, 224, 250.