Supporting Information

Novel rGO/α-Fe₂O₃ Composite Hydrogel: Synthesis, Characterization and High Performance of Electromagnetic Wave Absorption

Hui Zhang, ^{a,c} Anjian Xie,^c Cuiping Wang,^c Haisheng Wang,^b Yuhua Shen^{*,b} and Xingyou Tian^{*,a}

^a Key Laboratory of Materials Physics, Institute of Solid State Physics,

Chinese Academy of Sciences, Hefei 230031, P. R. China.

^b School of Chemistry and Chemical Engineering, Anhui University,

Hefei 230039, P. R. China

^c School of Physics and Materials Science, Anhui University, Hefei

230039, P. R. China

* To whom correspondence should be addressed, Email:

s_yuhua@163.com, xytian@issp.ac.cn

Supporting Figures

Fig.S1 TG analyses of product-1 to product-3 measured from 50 to 700° C at a heating rate of 10 °C min⁻¹ in air

Fig.S2 Reflection loss curves for the 2D rGO/ α -Fe₂O₃ composite with different thickness in the frequency range of 1-18 GHz (the weight ratio of the raw material as GO to Fe₃O₄ nanoparticles is 4:5)