Supporting Information

Templated High-Yield Synthesis of Pt Nanorods Enclosed by High-Index {311} Facets for Methanol Selective Oxidation

Lini Yang,^a Xuehua Song,^a Menglu Qi,^a Lixin Xia^{*a} and and Mingshang Jin^{*b}

 ^a College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, People's Republic of China
^b Center for Materials Chemistry, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, People's Republic of China

*To whom correspondence should be addressed. E-mail: jinm@mail.xjtu.edu.cn; lixinxia@inu.edu.cn

Experimental Section

Synthesis of SBA-15: The mesoporous silica SBA-15 was synthesized using a literature approach. Briefly, a solution of P123 : HCl : TEOS : $H_2O = 2$: 15 : 3.6 : 60 (mass ratio) was prepared, stirred for 24 h at 40 °C, and then heated at 100 °C for 2 days. The final products were washed, dried and calcined at 550 °C for 6 h.

Synthesis of Pt Nanorods and Nanoparticles: As to prepare Pt nanorods, 0.4 g of parent SBA-15 was dehydrated at 110 °C vacuum for 4 h. Then, a mixture of 2 ml aqueous solution thant contains

1ml ethylene glycol, 1 ml water, and 53 mg $H_2PtCl_6 \cdot 6H_2O$ was infiltrated in SBA-15 by incipient wetness impregnation at room temperature. The impregnated samples was quickly transported into the oven and allowed to react at 140 °C for 60 minutes. After that, the products were then washed, dried, and collected. Finally, Pt nanorods were found to be embedded in the SBA-15 host with 4% weight loading of Pt. 3-nm Pt nanoparticles were synthesized by the similar process, but substituting ethylene glycol with glucose as the reducing reagent. Free-standing Pt nanorods and nanoparticles can be further extracted from SBA-15 template by HF etching.

Characterization

The N_2 adsorption–desorption isotherms were recorded on an ASAP 2000 instrument. TEM images were obtained with a Philips CM 200 Transmission Electron Microscope equipped with a CCD camera. XRD patterns were collected on a Rigaku D/MAX 2400 diffractometer equipped with a CuK α X-ray source.

Catalytic Measurement

The selective oxidation of methanol to methylformate (MF) was carried out in a fixed-bed quartz flow reactor under atmospheric pressure. The feed gas composition is 2% Methanol, 4% O_2 , He balance. 100 mg catalysts (SBA-15 supported Pt nanorods and nanoparticles) were used for the methanol selective oxidation. It was hold for 1 hr at each evaluating temperature. The typical gas hourly space velocity is 18000 mlg⁻¹h⁻¹. The products were analyzed by an on line gas chromatograph (Agilent 7890N) equipped with TCD and FID detectors.

Figure S1. Small angle XRD patterns of (a) SBA-15 (a) before and (b) after embedding Pt nanorods.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2013

Figure S2. Nitrogen adsorption isotherms of (a) SBA-15, (b) Pt nanoparticles/SBA-15 and (c) Pt nanorods/SBA-15.

Figure S3. High angle XRD patterns of (a) SBA-15, and (b) Pt nanoparticles/SBA-15, (c) Pt nanorods/SBA-15.

Figure S4. HRTEM images of Pt nanorods, all of the angles are 29°, corresponding to the calculated data (29.5°) of the angle between (111) and (311), illustrating the Pt nanorods are bounded by {311} facets.

Figure S5. Reaction performance of SBA-15 supported Pt nanorods with time on stream.

Figure S6, TEM image of SBA-15 supported Pt nanorods after catalytic reaction.

Figure S7. Selectivity of CO_2 over the SBA-15 supported Pt (a) nanorods and (b) nanoparticles catalysts.

Table S1. Physicochemical properties of selected samples.

Sample	S_{BJH}/m^2g^{-1}	Vt/m^3g^{-1}	Dpore/nm
SBA-15	702	0.92	6.1
Pt nanoparticles/SBA-15	620	0.82	5.8
Pt nanorods/SBA-15	582	0.78	5.5

 S_{BJH} , BJH specific surface area; V_t , total pore volume; D_{BJH} , pore diameter calculated using BJH method.