Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Supporting information Enhancing the Phase Segregation and Connectivity of Hydrophilic Channels by Blending Highly Sulfonated Graft Copolymers with Fluorous Homopolymer

5 Mads Møller Nielsen, Ami Ching-Ching Yang, Katja Jankova, Søren Hvilsted and Steven Holdcroft

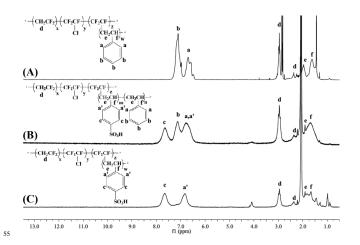
Synthesis

Materials

The chemicals were purchased from Aldrich and used as received unless otherwise stated: vinylidene fluoride (VDF, +99%), 10 chlorotrifluoroethylene (CTFE, 98%), pentadecafluorooctanoic acid (96%), 2,2-bipyridyl (bpy, +99%), Acetic anhydride (Aldrich, 99.5%), potassium persulfate (KPS, Allied Chemical, reagent grade), sodium metabisulfite (Na₂S₂O₅, Anachemia, anhydrous, reagent grade), 1,2-dichloroethane (DCE, Caledon, 15 reagent grade), N-methyl-2-pyrrolidone (NMP, anhydrous, 99.5%), sulfuric acid (Anachemia, 95-98%, ACS reagent).

- Copper(I) chloride (CuCl, 99%), copper(II) chloride (CuCl₂, 99.999%) were purified according to literature^[31]. Styrene (St, +99%) was washed twice with 5% aqueous NaOH and twice with ²⁰ water, dried overnight with MgSO₄, distilled over CaH₂ under
- reduced pressure, and stored under N_2 at -20 °C.

SynthesisoffluorousmacroinitiatorsThe macroinitiator P(VDF-co-CTFE) was previously prepared by25emulsion copolymerization of VDF and CTFE. In brief, thepolymerization procedure is: To a 160 mL pressure vessel (ParrInstruments) equipped with a 4.14 MPa (600 psi) pressure reliefvalve and a magnetic stir bar was added a mixture of 100 mLwater, 0.40 g KPS, 0.29 g Na2S2O5 and 0.04 g30pentadecafluorooctanoic acid. A mixture of VDF and CTFE ofpredetermined composition was then introduced to the reactor,thereby reaching a constant pressure of 2.07 MPa (300 psi) at 60°C. The polymerization was carried out for 60 to 90 minutes.Freezing, followed by washing with water and ethanol,


³⁵ coagulated the resulting polymer latex. The crude polymer was purified by repeated dissolution in THF and re-precipitation in ethanol, followed by drying at 80 °C under vacuum for 24 hours.

ATRP-grafting

of

⁴⁰ P(VDF-*co*-CTFE)-*g*-PS was synthesized by ATRP, with the chlorines of the macroinitiator serving as initiating sites for the monomer. P(VDF-*co*-CTFE)-*g*-PS with 1.1 mol % CTFE was synthesized as follows. 0.9996 g P(VDF-*co*-CTFE) was dissolved in 40 mL NMP in a predried round bottom flask, then 3.0009 g

⁴⁵ bpy, 40 mL styrene, 0.6406 g CuCl, and 0.0887 g CuCl₂ were added. The flask was sealed tight with a septum and degassed over three freeze-pump-thaw cycles to remove oxygen and water from the reactor. The reaction mixture was heated in oil bath under a blanket of nitrogen at 110 °C for a total reaction time of ⁵⁰ 45 hours. The resulting brown polymer mixture was precipitated in methanol to yield solid polymers. Soxhlet extraction with cyclohexane was performed to remove PS homopolymer. Hereafter followed a final precipitation from methanol.

Fig. S1 ¹H NMR spectra of graft polystyrene of (A) pristine Graft_{2.6-L} (B) partially sulfonated Graft_{2.6-L} (DS = 56%) and (C) fully sulfonated Graft_{2.6-L}.

60 Membrane Properties

styrene

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Table S1 Properties of $Graft_{1.1}$ and blend membranes.

Sample	IEC (mmol g ⁻¹)	Water uptake (wt%)	[H2O]/[SO3-]	Conductivity (mS cm ⁻¹)	[-SO ₃ H] (M)	$\mu_{estx1000} (cm^2 sV^{-1})$
Graft _{1.1}	1.10±0.07	192±28	62	46±3	0.77 ± 0.04	0.63
SB40-60	1.22±0.18	66±2	30	63±3	0.71±0.02	0.92
MB40-60	1.31±0.10	98±3	41	62±1	0.68 ± 0.08	0.95
LB40-60	1.15±0.09	91±9	44	62±4	0.72 ± 0.01	0.89
SB25-75	0.60 ± 0.02	32±10	29	48±6	0.97	0.51
MB25-75	0.75 ± 0.09	40±3	30	49±5	0.90	0.57
LB25-75	0.64 ± 0.02	25±3	21	51±6	0.90	0.59

Table S2 Properties of partially and fully sulfonated Graft_{2.6}. Data has previously been reported.²⁸

Sample	IEC ^a (mmol g ⁻¹)	DS (%)	Water uptake ^b (wt%)	Water content ^b (wt%)	[H2O]/[S O3 ⁻]	Conductivity ^c (mS cm ⁻¹)	[-SO ₃ H] (M)	$\mu_{estx1000}$ (cm ² sV ⁻¹)
	1.12±0.01	18	18±1	15±1	9±1	8±1	1.07±0.01	0.07 ± 0.01
P(VDF-co- CTFE)-g-SPS39	1.72±0.04	31	47±6	32±1	15±1	47±2	1.34±0.04	0.37±0.03
	2.27±0.07	53	155±8	61±1	38±2	72±2	1.04 ± 0.07	0.77±0.09
	2.66±0.06	60	211±6	67±1	45±2	84±11	0.89±0.02	0.96±0.04
	3.02±0.05	70	278±25	73±1	53±4	77±9	0.77±0.02	1.03±0.03
P(VDF-co- CTFE)-g-SPS ₆₂	3.33±0.08	85	788±33	89±1	136±7 283	44 ± 2	0.39 ± 0.02	1.12 ± 0.09
	3.52 _{theoretical}	99 19	1790±55	96±1 13±1		41±3	0.30±0.08	1.42±0.03
	1.23 ± 0.04	19	15 ± 1	15±1	7±1	1 ± 0.1	0.82 ± 0.01	0.01 ± 0.00
	$1.79{\pm}0.04$	23	36±1	26±1	11±1	21±1	1.21±0.07	0.18 ± 0.02
	2.00±0.05	28	48±2	32±1	13±1	34±2	1.38±0.05	0.26±0.03
	2.74±0.04	49	298±11	75±1	62±3	68±4	0.66±0.02	1.01 ± 0.04
	3.07±0.05	58	835±66	89±1	158±8	33±1	0.33±0.01	1.04 ± 0.06
	$4.05_{theoretical}$	99	Partially dissolve in water		-	-	-	-
	0.74±0.03	12	11±1	10±1	9±2	3±2	0.45±0.07	0.06 ± 0.04
	1.35±0.02	23	29±3	22±2	12±1	15±2	1.07 ± 0.05	0.14 ± 0.02
	1.48 ± 0.04	27	38±2	27±1	14±1	23±1	1.11±0.03	0.24 ± 0.02
P(VDF-co- CTFE)-g-SPS ₇₉	1.81±0.04	30	65±4	39±2	20±1	45±1	1.19±0.03	0.37±0.02
	2.05±0.09	33	128±12	56±2	33±2	69±4	0.91±0.08	0.80 ± 0.08
	2.35±0.02	48	815±63	89±1	199±14	33±9	0.34±0.03	1.02±0.05
	2.91±0.04	56	1060±94	92±1	211±10	36±7	0.28±0.06	1.23±0.08
	$4.29_{theoretical}$	99	Partially dise	solve in water	-	-	-	-

s ^a By titration. ^b Room temperature. ^c Soaked in H₂O overnight and dabbed with tissue prior to measurements at room temperature* Errors were calculated as standard deviations over multiple measurements.