Electronic Supplementary Information

N-Trinitroethylamino Functionalization of Nitroimidazoles: A New Strategy for High Performance Energetic Materials

Ping Yin^a, Qinghua Zhang ^a, Jiaheng Zhang ^a, Damon A. Parrish^b and Jean'ne M Shreeve^a*

- ^a Dr. P. Yin, Dr. Q. Zhang, J. Zhang, Prof. Dr. J. M. Shreeve Department of Chemistry, University of Idaho Moscow, ID 83844-2343 (USA)
 Fax: (+1) 208-885-9146
 E-mail: jshreeve@uidhao.edu
- ^b Dr. D. A. Parrish
 Naval Research Laboratory, Code 6030
 Washington, D.C. 20375-5001 (USA)

Computational Data

- S-1 Scheme 1s. Isodesmic reactions for the derivatives of *N*-aminonitroimidazoles and *N*-trinitroethylaminonitroimidazoles.
- S-2 Table 1s. Calculated (MP2/6-311++G** // B3LYP/6-31+G**) total energy (E0), zero-point energy (ZPE), values of thermal correction (HT), and heats of formation (HoF) of derivatives of *N*-aminonitroimidazoles and *N*-trinitroethylaminonitroimidazoles.

 $\begin{array}{c} O_2 N \longrightarrow & NO_2 \\ N \longrightarrow & N^- NH_2 \end{array} + NH_3 + 2CH_4 \longrightarrow & \begin{array}{c} \sqrt{-1} \\ N \gg & NH \end{array} + 2CH_3 NO_2 + N_2 H_4 \end{array}$ $\begin{array}{c} O_2 N \\ \searrow \\ N \\ \searrow \\ N \\ \searrow \\ NH_2 \end{array} + NH_3 + 2CH_4 \longrightarrow \begin{array}{c} \sqrt{-} \\ N \\ \searrow \\ NH \end{array} + 2CH_3 NO_2 + N_2 H_4 \end{array}$ NO. $N \longrightarrow N \longrightarrow NH_3 + CH_4 \longrightarrow N \longrightarrow NH + CH_3NO_2 + N_2H_4$ 0₂N $\underset{N \searrow N^{-} NH_{2}}{\stackrel{N_{3}}{\longrightarrow}} + NH_{3} + 2CH_{4} \longrightarrow \underset{N \searrow NH}{\stackrel{}{\longrightarrow}} + CH_{3}NO_{2} + N_{2}H_{4} + CH_{3}N_{3}$ $\begin{array}{c} O_2 N & \swarrow \\ \searrow & \swarrow \\ N & \searrow & N^- NH_2 \end{array} + NH_3 + 2CH_4 \longrightarrow \begin{array}{c} \sqrt{-} \\ N & \searrow & NH \end{array} + CH_3 NO_2 + N_2 H_4 + CH_3 CI$ H_2N H_2N N N NO_2 $+ 4CH_4 + 2NH_3 \longrightarrow 2 N_{\odot}NH + 2CH_3NO_2 + C_2H_6 + 2N_2H_4$ NH_2 $O_2 N \xrightarrow{N} NO_2 + 2NH_3 + 6CH_4 \longrightarrow N \xrightarrow{N} NH + MeNH_2 + C_2H_6 + 5CH_3NO_2 + NH_2NH_2$ $HN \longrightarrow NO_{2} + 2NH_{3} + 6CH_{4} \longrightarrow N \longrightarrow NH + MeNH_{2} + C_{2}H_{6} + 5CH_{3}NO_{2} + NH_{2}NH_{2}$ $HN \longrightarrow NO_{2} + 2NH_{3} + 5CH_{4} \longrightarrow N \longrightarrow NH + MeNH_{2} + C_{2}H_{6} + 4CH_{3}NO_{2} + NH_{2}NH_{2}$ $H_{N} \xrightarrow{NO_{2}} NO_{2}$ $H_{N} \xrightarrow{NO_{2}} + 2NH_{3} + 6CH_{4} \xrightarrow{\sqrt{-1}} N_{N} + MeNH_{2} + C_{2}H_{6} + 4CH_{3}NO_{2} + NH_{2}NH_{2} + CH_{3}CI$

S-1 Scheme 1s. Isodesmic reactions for the derivatives of *N*-aminonitroimidazoles and *N*-trinitroethylaminonitroimidazoles. S-2 Table 1s. Calculated (MP2/6-311++G** // B3LYP/6-31+G**) total energy (E0), zero-point energy (ZPE), values of thermal correction (HT), and heats of formation (HoF) of derivatives of *N*-aminonitroimidazoles and *N*-trinitroethylaminonitroimidazoles.

Compounds	E ₀ [Hartree/Particle]	ZPE [Hartree/Particle]	H _T [Hartree/Particle]	$\frac{\text{HoF}(\text{gas})}{[\text{kJ mol}^{-1}]}$
4 a	-689.0210145	0.092826	0.103901	209.9
4 b	-689.0243019	0.092659	0.103694	200.8
4 c	-484.9316133	0.090549	0.098947	195.3
4d	-648.1700351	0.093554	0.104704	536.1
4 g	-968.6946431	0.160924	0.177371	400.3
6a	-1379.6870028	0.155182	0.177582	190.4
6b	-1379.6915101	0.155144	0.176231	175.0
6c	-1175.601235	0.153288	0.171887	164.3
6d	-1338.8436338	0.156301	0.177622	494.6
6e	-1634.6527486	0.143672	0.163537	144.5

1

1

