## Solar rechargeable redox flow battery based on Li<sub>2</sub>WO<sub>4</sub>/LiI couples in

## dual-phase electrolytes

N. F. Yan, G. R. Li, and X. P. Gao

**Fabrication of the cell.** The cell was consisted of the dye-sensitized TiO<sub>2</sub> photo-anode, anode/electrolyte, cathode/electrolyte, and LISICON lithium-ion-conducting glass ceramic (LICGC, 0.15 mm-thick,  $Li_{1+x+y}Al_xTi_{2-x}Si_yP_{3-y}O_{12}$  from OHARA Inc., Japan) membrane. Silicone membrane gasket was used to fix membrane and Pt coated Ti mesh. Pt coated Ti mesh (2 cm × 2 cm) was used as working electrode in anode and cathode compartments. The TiO<sub>2</sub> photo-anode was fabricated by doctor-blading a commercial TiO<sub>2</sub> sol (Solaronix, Ti-Nanoxide T/SP) onto the FTO glass and sintered for 30 min at 450 °C in muffle furnace (heating rate of 10°C min<sup>-1</sup>). The TiO<sub>2</sub> electrode was immersed in dye (N719,  $5.0 \times 10^{-4}$  M in ethanol solution) at room temperature for 24 h in dark, then rinsed with ethanol and dried. The effective cell area was 4 cm<sup>2</sup>.

**Performance measurement.** Cyclic voltammetry (CV) of the LiI (0.01 M LiI/0.1M LiClO<sub>4</sub> in propylene carbonate) and Li<sub>2</sub>WO<sub>4</sub> (0.01M Li<sub>2</sub>WO<sub>4</sub>/0.1M LiClO<sub>4</sub> in H<sub>2</sub>O) was carried out to identify redox potential and electrochemical reversibility using an IM6ex electrochemical workstation (Zahner IM6ex). CV was conducted by using a conventional three-electrode system with the scan rate of 50 mV s<sup>-1</sup>. Pt-coated Ti mesh was used as working electrode, Pt/FTO as a counter electrode, and Ag/Ag<sup>+</sup> in acetonitrile or saturated calomel electrode (SCE) as the reference electrode. CV of the dve (N719) adsorbed onto FTO (10<sup>-4</sup> M N719 in ethanol) was carried out in 0.1 M LiClO<sub>4</sub> in anhydrous acetonitrile at the scan rate of 1 V s<sup>-1</sup>. In the solar rechargeable flow battery, Li<sub>2</sub>WO<sub>4</sub> was used as anode (0.1M Li<sub>2</sub>WO<sub>4</sub> and 0.2M LiClO<sub>4</sub> in H<sub>2</sub>O), and LiI was used as cathode (0.1M LiI and 0.5M TBP in propylene carbonate). The electrolyte was 1.2 mL in volume, which was re-circulated in each half compartment by two miniature peristaltic pumps. When CV and cell performance are measured,  $LiClO_4$  is added as the supporting electrolyte salt to insure the stable ionic conductivity of the aqueous electrolyte. After soaking in electrolyte for 15 min, the cell was illuminated by a solar simulator (CHF-XM500, Beijing Trusttech) under 100 mW cm<sup>-2</sup> irradiation and calibrated by a standard silicon solar cell. The galvanostatic method was employed to measure the electrochemical capacity and cycle life of the battery at room temperature using a LAND-CT2001A instrument.





**Fig. S1** (a) Potential profiles of the solar rechargeable redox flow battery at photo-charge under 100 mW cm<sup>-2</sup> irradiation for 10 min and the current density of 0.075 mA cm<sup>-2</sup> for discharging with different flow rates. (b) Discharge capacities vs. cycle number during 10 cycles with different flow rates.



**Fig. S2.** (a) Potential profiles of the solar rechargeable redox flow battery at photo-charge under 100 mW cm<sup>-2</sup> irradiation for different times, and the current density of 0.075 mA cm<sup>-2</sup> for discharging with the flow rate of 0.05 mL min<sup>-1</sup>. (b) Discharge capacities vs. cycle number during 10 cycles for different photo-charge times.