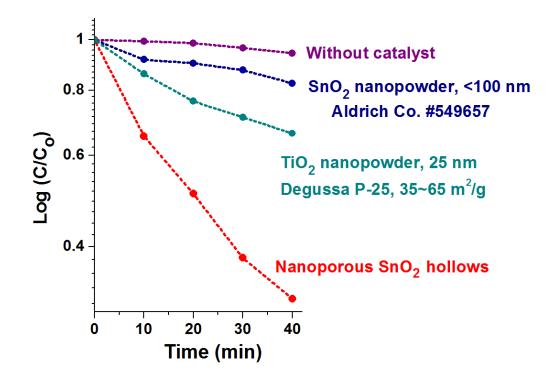

]

Electronic Supplementary Information for


Chemical Bottom-Up and Successive Top-Down Approach for Nanoporous SnO₂ Hollows from Ni₃Sn₂ Nanoalloys: High Surface Area Photocatalysts and Anode Materials for Lithium Ion Batteries

Jaewon Choi,^a Seung Yong Han,^a Jaewon Jin,^a Jihyun Kim,^a Ji Hoon Park,^a Sang Moon Lee,^b Hae Jin Kim,^b and Seung Uk Son^{*a} ^aDepartment of Chemistry and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea and ^bKorea Basic Science Institute, Daejeon 350-333, Korea

Figure S1. Photocatalytic studies of nanoporous SnO_2 hollow materials (20 mg) for the decomposition of RhB (red line), methylene blue (MB, blue line), and methyl orange (MO, orange line) under UV irradiation (2.0 mW/cm²) from an 120W Xe arc lamp. The 0.01 mM dye solutions (6 mL) were used.

Figure S2. Photocatalytic studies of nanoporous SnO_2 hollow materials (20 mg, red line), TiO₂ nanopowder (20 mg, green line), and SnO_2 nanopowder (20 mg, dark blue line) for the decomposition of RhB under visible light irradiation (0.9 mW/cm²) from an 120W Xe arc lamp. The 0.01 mM dye solutions (6 mL) were used.

