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Supporting Information Figures
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Figure S1. Cyclic voltammetry traces at different scan rates of H-DATPA (left) and Me-DATPA
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Figure S2. Cyclic voltammetry traces at different scan rates of MeS-DATPA (left) and MeO-DATPA

(right). Note that the two-oxidation process can barely be observed, and therefore, pulse voltammetry
techniques must be used.
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Figure S3. Cyclic voltammetry traces at different scan rates of Spiro-OMeTAD.
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Figure S4. Cyclic voltammetry at different scan rates (left) and square-wave voltammetry (right) traces
of D102 dye in CH,CI, solution.
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Figure S5. Cyclic voltammetry of D102 anchored onto mesoporous TiO, nanoparticles. Square-wave
voltammetry could not be measured due to high intense signal.
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Figure S6. Transmittance of TiO, mesoporous film.
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Figure S7. Absorption (black line) and emission (red line) spectra of D102 anchored onto mesoporous

TiO, nanoparticles.
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Figure S8. Four point conductivity measurements for Spiro-OMeTAD (with and without LiTFSI) have
been used to estimate the contact resistance according to the previous report J. Appl. Phys. 2004, 96,
7312.
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Supporting Information Tables

Table S1. HOMO energies of DATPA derivatives obtained by DFT calculations performed at
B3LYP/6-31G(d) level of theory versus experimental values from electrochemical measurements.

DFT (gas phase) | DFT (CH,CI,) | Experimental
H-DATPA -4.75 eV -4.92 eV -5.33 eV
Me-DATPA -4.63 eV -4.83 eV -5.23 eV
MeS-DATPA -4.61eV -4.77 eV -5.14 eV
MeO-DATPA -4.52 eV -4.69 eV -5.02 eV

Table S2. Charge transport parameters in the samples generated by theoretical fitting of experimental
curves reported in the main text. Carrier mobility 1, effective density of states Ny, total trap density H,
and characteristic trap energy E..

p em?Vv?is?) | Ny (em®) | Hp(cm?®) | E¢(meV)

H-DATPA 3.0x10° | 1x10"¥ |55x10"% 40
Me-DATPA 2.8x10° | 1x10" |6.0x10% 51
MeS-DATPA 40x10° | 1x10” |1.6x10% 91
MeO-DATPA 6.0x10° | 1x10® | 7.0x10" 88

Spiro-OMeTAD | 3.6x10* 1x10" | 4.0x10% 32
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Detailed description of mobility measurements

Earlier studies in organics have shown that the space-charge limited current (SCLC) governs the charge
transport either by drift of charge carriers under the influence of traps, distributed in energy and space-
called trap model or by temperature and field dependent mobility models. Due to the low mobility of
charge carriers in organic semiconductors, the injected carrier forms a space charge. This space charge
creates a field that opposes the applied bias and thus decreases the voltage drop across junction; as a
result SCLC have been proposed as the dominant conduction mechanism in organic semiconductors.
Ohmic conduction at low fields can be described by:

V
J=gnm— 1
qn g 1)

where, q is the electronic charge, n is the carrier density, [ is the carrier mobility, d is the thickness of
the film.
SCLC theory with an exponential trap distribution proposes that the space charge that limits conduction

is stored in the traps. Assuming that the trapped carrier density (p;) >> free carrier density (p) and using
continuity equation and boundary condition for current density (J) and applied voltage (V) as:

J = qmp(x)F(x) @

V=0F(x)dx 3
the expression for J, for traps (N,) distributed exponentially in energy (E) as:
(H,) [*
NZ(E):L_])J e( /El) (4)
Et
is given by:

J=q¢"'nN

v

20+1\"( leg, ) V™
(5)

[+1 L(1+1)HbJ d*

where Ny is the effective density of states, ¢ is the dielectric constant of material, &, is the permittivity
of the free space, N(E) is the distribution function of hole trap density at an energy level E above the
valence band edge, H, is the total trap density at the edge of valence band, E; is the characteristic trap
energy that is often expressed in terms of the characteristic temperature of trap distribution Tc as:

E =k,[T. (6)
E _T

==t =€ 7
kT ™

where kg is the Boltzmann constant and the parameter | determines the distribution of traps in the
forbidden gap.

The experimental data has been analyzed in terms of SCLC by generating theoretical curves using
equation 5. The theoretical curves generated have been found to fit quite well the experimental data
establishing explicitly that the charge transport in all the four samples is governed by trap limited
SCLC where traps are distributed in energy and space.
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'H and *C NMR spectra
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Fluorescence lifetime of D102 on AI203 in absence of any of the hole conductors
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