Supporting Information for:

Galvanic Replacement Approach for Bifunctional Polyacrylonitrile/Ag-M (M=Au or Pd) Nanofibers as SERS-active Substrates for Monitoring Catalytic Reaction

Minhua Cao, Lin Zhou, Xiaoqian Xu, Si Cheng*, Jian-Lin Yao and Li-Juan Fan*

Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China E-mail: chengsi@suda.edu.cn, ljfan@suda.edu.cn

Fig. S1 SEM image of electrospun PAN/AgNO₃ nanofibers

Fig. S2 SEM-EDS spectra of PAN/Ag nanofibers (a) PAN/Ag-M(M=Au or Pd) bimetallic nanofibers (b-i) with different composition: (b) PAN/Ag_{0.8}Au_{0.2}; (c) PAN/Ag_{0.6}Au_{0.4}; (d) PAN/Ag_{0.45}Au_{0.55}; (e) PAN/Ag_{0.3}Au_{0.7}; (f) PAN/Ag_{0.9}Pd_{0.1}, (g) PAN/Ag_{0.77}Pd_{0.23}; (h) PAN/Ag_{0.67}Pd_{0.33}; (i) PAN/Ag_{0.54}Pd_{0.46} bimetallic nanofibers.

Fig. S3 Cross-sectional TEM images of (a) PAN/Ag nanofibers, (b) PAN/Ag_{0.6}Au_{0.4} nanofibers and (c) PAN/Ag_{0.9}Pd_{0.1} nanofibers

Fig.S4 The XRD pattern of (a) PAN/Ag, (b) PAN/Ag_{0.80}Au_{0.20}, (c) PAN/Ag_{0.90}Pd_{0.10}. (d) PAN/Ag_{0.77}Pd_{0.23}. (e) PAN/Ag_{0.67}Pd_{0.33}. (f) PAN/Ag_{0.54}Pd_{0.46} bimetallic nanofibers.

Fig. S5 TEM images of single fiber for $PAN/Ag_{0.77}Pd_{0.23}$ (a), $PAN/Ag_{0.67}Pd_{0.33}$ (b) and $PAN/Ag_{0.54}Pd_{0.46}$ (c) bimetallic nanofiber

Fig. S6 (a) SERS spectra of R6G (10^{-6} - 10^{-11} M) absorbed on PAN/Ag_{0.6}Au_{0.4} bimetallic nanofibers. (b) SERS spectrum of R6G (10^{-11} M) absorbed on PAN/Ag_{0.6}Au_{0.4} bimetallic nanofibers and Raman spectrum of R6G aqueous solution (10^{-4} M).

Fig. S7 Time dependent UV-vis absorption spetra for the reduction of 4-NP by NaBH₄ in the presence of: (a) PAN/Ag; (b) PAN/Ag_{0.6}Au_{0.4}; (c) PAN/Ag_{0.9}Pd_{0.1} bimetallic nanofibers.

Fig. S8 Photos of PAN nanofibers mats (a-e) and PAN/Ag_{0.60}Au_{0.40} nanofibrous mats (f-j) in DMF solution at different time interval

- 3 -

Fig. S9 Time dependent UV-vis absorption spetra for the reduction of 4-NP by NaBH₄ in the presence of: (a) PAN/Ag_{0.77}Pd_{0.23}; (b) PAN/Ag_{0.67}Pd_{0.33}; (c) PAN/Ag_{0.54}Pd_{0.46} bimetallic nanofibers.; (d) Plot of $ln(A_t/A_0)$ as a function of time for the reduction of 4-NP by NaBH₄ catalyzed by PAN/Ag_{0.90}Pd_{0.10}, PAN/Ag_{0.77}Pd_{0.23}, PAN/Ag_{0.67}Pd_{0.33}, and PAN/Ag_{0.54}Pd_{0.46} bimetallic nanofibers.

Fig. S10 The relationship between the ratio of intensity of the 1589 cm^{-1} to the 1575 cm^{-1} and reaction time.