Supplementary Information for

Rapid synthesis of nanoscale terbium-based metal-organic frameworks by an ultrasound-vapour phase diffusion combined method for highly selective sensing of picric acid

Juan-Ding Xiao, Ling-Guang Qiu*, Fei Ke, Geng-Sheng Xu, Yi-Ming Wang

and Xia Jiang

* E-mail address: lgqiu@ahu.edu.cn

Table S1

Yields of Tb(1,3,5-BTC) crystals prepared by ultrasonic synthesis and ultrasonic-vapour phase diffusion methods

Synthetic methods	Reation time	Temperature (°C)	Yields(based on Tb)	Product
Ultrasound	2 min	60	65.7%	$[Tb(1,3,5-btc)]_n$
diffusion	10 min	60	63.5%	[Tb(1,3,5-btc)] _n
	20 min	60	64.0%	[Tb(1,3,5-btc)] _n
	30 min	60	59.1%	[Tb(1,3,5-btc)] _n
ultrasound	30 min	60	0.6%	[Tb(1,3,5-btc)] _n
	60 min	60	1.7%	[Tb(1,3,5-btc)] _n
	90 min	60	7.2%	$[Tb(1,3,5-btc)]_n$
	140 min	60	14.2%	$[Tb(1,3,5-btc)]_n$ and $[Tb(1,3,5-btc)(H_2O)_6]_n$

Fig. S1 PXRD patterns of the as-synthesized Tb(1,3,5-btc) by conventional sovolthermal heating method at 80 °C for 24h.

Fig. S2 Emission and excitation spectra of solid state [Tb(1,3,5-BTC)]n. The excitation wavelength is 324 nm and the emission wavelengths are 491, 546, and 589 nm.

Fig. S3 Variation of luminescence intensity of suspension of the as-prepared [Tb(1,3,5-btc)]n nano- and microcrystals in ethanol solution with the standing time, clearly revealing better luminescence stability of [Tb(1,3,5-btc)]n nanocrystal suspension in solution. The excitation wavelength is 324 nm.

Table S2

Summary of the selectivity of different sensor systems with picric acid reported previously and

PA

 \checkmark

 \checkmark

 \checkmark

Ref.

[1]

investigated in the present work.

Fluorophores	structures	NB	2-NT	4-NT	2,4- DNT	2,6- DNT	
Hexaphenylsilole film		×	×	×	×	×	
	R R R	~	_	—	\checkmark	\checkmark	
	$H \xrightarrow{M}_{n} H$ 1; M = Si 2; M = Ge	×	_	_	\checkmark	\checkmark	
	Ph Ph Ph Si Ph	,			,	/	

" V	"— sensitive;	"×"	insensitive;	""	-not detected
------------	---------------	-----	--------------	----	---------------

	Ph Ph Ph Si Ph Ph Si Ge n Ph Ph Ph Ph 3	~	_		~	~	~	
Oursenie	Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph	\checkmark	_		\checkmark	\checkmark	\checkmark	
Organic conjugated polymers 1-12		\checkmark	_	-	\checkmark	\checkmark	\checkmark	[47]
		\checkmark	_		\checkmark	\checkmark	\checkmark	
		\checkmark	_		\checkmark	\checkmark	\checkmark	
		\checkmark	_		\checkmark	\checkmark	\checkmark	
	Ph Ph	\checkmark			\checkmark	\checkmark	\checkmark	
	Ph MeO R^1 R^2 Ph R^2	\checkmark			\checkmark	\checkmark	\checkmark	
		\checkmark	_	-	\checkmark	\checkmark	\checkmark	
	11; $R^1 = H$, $R^2 = Me$ or Ph 12; $R^1 = Ph$, $R^2 = Ph$	\checkmark		_	\checkmark	\checkmark	\checkmark	

Fluoroalkylated polysilane Film	CF ₃	_	_	_	~	~	~	[46]
Phosphole oxide		_	_		\checkmark	_	\checkmark	[48]
Poly(silylene- vinylene)	Jorrogorrog		_	_	_	_	\checkmark	[49]
Organic conjugated olymers			_	_	~	_	~	[51]
Pyrene moieties		~	_	_	~	_	~	[52]
Organic fluorophores 1-5	TMS	~	_	\checkmark	_	_	~	
	TMS	×	_	\checkmark	_	_	~	
	TMS	~	_	\checkmark	_	_	\checkmark	[53]
		~	_	\checkmark	_	_	~	
	TMS TMS	\checkmark		X			~	

SNW-1 nanoparticles		~	_	~	~	_	~	[54]
Terthiophene	-058 NH−H₂C 5 5 5 -058 NH=C=0 -058 NH=C=0 -058 NH=H₂C 5	×	_	_	×	_	\checkmark	[55]
An anthracene /porphyrin dimer		_		_	_	_	\checkmark	[57]
[Zn ₂ (oba) ₂ (bpy)]		~	~		×			[58]
[Zn ₂ (bpdc) ₂ (bpee)]		×	_	_	~	_	_	[59]
$[Eu_2(BDC)_3(H_2O)$ $\cdot (H_2O)_2]$		~	_	~	_	_	_	[60]
[Zn ₄ O(L) ₂ ·(H ₂ O) ₃]		~	~	_	~	1	1	[61]

Hyperbranched polytriazoles	R=-(CH ₂) _k -(MbP1a) -(CH ₂) _k -(MbP1b)						~	[62]
Tetrakis(4-methox								
porphyrin		—	—	—	\checkmark	—	Х	[63]
(TMOPP) film								
TPE-CP	o PHECP o			_	Ι		\checkmark	[64]
[Tb(1,3,5-BTC)] _n		×	×	×	×	×	~	this work

Fig. S4 Luminescence quenching of $[Tb(1,3,5-BTC)]_n$ nanocrystals with nitroaromatics (NB, NTs, DNTs, and PA) in aqueous solution.

Fig. S5 The decay curves for the luminescence of $[Tb(1,3,5-BTC)]_n$ nanocrystals.