Supporting Information # Solution-Processed Benzotrithiophene-Based Donor Molecules for Efficient Bulk Heterojunction Solar Cells Dhananjaya Patra, ^a Chao-Cheng Chiang, ^a Wei-An Chen, ^b Kung-Hwa Wei, ^c Meng-Chyi Wu, ^b and Chih-Wei Chu ^{a,d} * E-mail: gchu@gate.sinica.edu.tw ^a Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan (ROC) ^b Institute of Electronic Engineering, National Tsing Hua University, Hsinchu, Taiwan (ROC) ^c Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu, Taiwan (ROC) ^d Department of Photonics, National Chiao-Tung University, Hsinchu, Taiwan (ROC) #### **Synthesis** #### **2,3-Dibromo-5-nonanoylthiophene** (1) Under N₂, anhydrous AlCl₃ (8.3 g, 62 mmol) was added portion-wise to an ice-cooled solution of 2,3-dibromothiophene (10.0 g, 41.3 mmol) and nonanoyl chloride (8.9 mL, 49.6 mmol) in CH₂Cl₂ (200 mL) for 15 min. The cooling bath was removed and then the mixture was stirred for 2 h at room temperature before being quenched with ice-cold 2 M HCl (400 mL). The aqueous phase was extracted with CH₂Cl₂ and dried (MgSO₄); the solvent was evaporated under reduced pressure to give a brown oil (15.4 g, 97.2%), which was used in the next step without further purification. ¹H NMR (300 MHz, CDCl₃): δ 7.47 (s, 1H), 2.80 (t, J = 7.2 Hz, 2H), 1.72–1.66 (m, 2H), 1.27 (m, 10H), 0.87 (t, J = 6.9 Hz, 3H). EIMS (m/z): calcd. for C₁₃H₁₈Br₂OS 381.92, found 382 [M⁺]. #### 5-Nonanoyl-2,3-bis(3-thienyl)thiophene (2). Pd(PPh₃)₄ (0.755 g, 0.909 mmol) was added under N₂ to a suspension of **1** (5.00 g, 13.1 mmol) and thiophene-3-boronic acid (3.70 g, 28.8 mmol) in 2 M Na₂CO₃ (20 mL), toluene (60 mL), and EtOH (10 mL) and then the mixture was heated under reflux for 24 h. The reaction was quenched with water and then the aqueous phase was extracted with CH₂Cl₂, dried (MgSO₄), and concentrated under reduced pressure. The residue was purified through column chromatography (SiO₂, toluene). The title compound was obtained as a pale-yellow solid (10.8 g, 80%) after recrystallization (toluene/MeOH). ¹H NMR (300 MHz, CDCl₃): δ 7.68 (s, 1H), 7.30 (dd, J = 2.7, 3.0 Hz 1H), 7.29–7.27 (m, 2H), 7.21 (d, J = 2.4 Hz, 1H), 7.02–6.99 (m, 2H), 2.88 (t, J = 7.5 Hz, 2H), 1.78–1.74 (m, 2H), 1.33–1.26 (m, 10H), 0.86 (t, J = 6.9 Hz, 3H). EIMS (m/z): calcd for C₂₁H₂₄OS₃ 388.09, found 389 [M⁺]. #### 5- Nonanoylbenzo[1,2-b:3,4-b':5,6-d'']trithiophene (3) Boron trifluoride diethyl etherate (1.25 mL, 10.0 mmol) was added to an ice-cooled solution of 2 (3.0)7.71 mmol) anhydrous (300)mL) g, in CH₂Cl₂ and then 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (2.10 g, 9.26 mmol) was added portion-wise over 10 min. The mixture was stirred at room temperature overnight and then the reaction was quenched through the addition of Zn (5.00 g, 77.1 mmol) and MeOH (150 mL); the mixture was again stirred overnight. After filtering, the filtrate was washed with water, dried (MgSO₄), and concentrated under reduced pressure. The residue was purified through column chromatography (SiO₂, toluene); subsequent recrystallization (EtOH) afforded the title compound as a yellow-orange solid (3.92 g, 58%). ¹H NMR (300 MHz, CDCl₃): δ 8.29 (s, 1H), 7.74 (d, J = 5.4Hz, 1H), 7.61 (d, J = 5.4 Hz, 1H), 7.55–7.51 (m, 2H), 3.06 (t, J = 7.2 Hz, 2H), 1.85–1.78 (m, 2H), 1.32–1.22 (m, 10H), 0.87 (t, J = 6.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 194.48, 142.06, 136.18, 133.51, 133.22, 132.21, 131.63, 131.12, 127.67, 125.46, 125.26, 122.63, 122.47, 39.39, 31.83, 29.68, 29.42, 29.39, 29.16, 24.83, 22.64, 14.09. EIMS (m/z): calcd for $C_{21}H_{22}OS_3$ 386.08, found 387 [M⁺]. #### 5-Nonylbenzo[1,2-*b*:3,4-*b*':5,6-*d*'']trithiophene (4) KOH (4.35 g, 77.6 mmol) and hydrazine monohydrate (6.27 mL, 129 mmol) were added to a suspension of **3** (1.0 g, 2.58 mmol) in ethylene glycol (100 mL) and then the mixture was stirred at 190 °C over night. After cooling to room temperature, the mixture was poured into water and extracted with CH₂Cl₂; the combined extracts were dried (MgSO₄) and concentrated. The residue was purified through column chromatography (SiO₂, hexane) to give a white solid (0.81 g, 84.4%). ¹H NMR (300 MHz, CDCl₃): δ 7.69 (d, J = 5.4 Hz, 1H), 7.56 (d, J = 5.4 Hz, 1H), 7.49–7.46 (m, 2H), 7.42 (s, 1H), 3.0 (t, J = 4.8 Hz, 2H), 1.84–1.76 (m, 2H), 1.32–1.26 (m, 10H), 0.87 (t, J = 6.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 145.39, 132.85, 132.35, 131.50, 131.02, 130.78, 129.76, 124.77, 124.05, 122.76, 122.30, 119.37, 31.87, 31.53, 30.76, 29.69, 29.50, 29.39, 29.30, 29.12, 22.66, 14.10. EIMS (m/z): calcd for C₂₁H₂₄S₃ 372.10, found 373 [M⁺]. #### 2,8-Bis(trimethylstannyl)-5-nonylbenzo[1,2-b:3,4-b':5,6-d'']trithiophene (5) A solution of *n*-BuLi in hexanes (1.6 M, 3.85 mL, 7.00 mmol) was injected slowly via syringe into a solution of **4** (1.00 g, 2.68 mmol) in anhydrous THF (100 mL) at -78 °C under N₂. After stirring for 1 h at low temperature, the mixture was stirred at room temperature for 2 h. The mixture was cooled once again to -78 °C and then a solution of trimethyltin chloride (1 M, 6.50 mL, 6.44 mmol) in THF was added; the mixture was then warmed slowly to room temperature and stirred overnight. The reaction was quenched through the addition of water and the aqueous phase extracted with hexane. The combined organic extracts were dried (MgSO₄) and concentrated to afford a light-yellow oil (1.40 g, 75%), which was used in the next step without further purification. ¹H NMR (300 MHz, CDCl₃): δ 7.75 (s, 1H), 7.60 (s, 1H), 7.46 (s, 1H), 3.01 (t, J = 7.2 Hz, 2H), 1.84–1.79 (m, 2H), 1.40–1.27 (m, 10H), 0.88 (t, J = 6.4 Hz, 3H), 0.48 (s, 18H). ¹³C NMR (75 MHz, CDCl₃): δ 144.78, 138.86, 137.69, 134.62, 134.51, 132.64, 132.37, 130.60, 130.27, 129.92, 123.95, 119.53, 31.87, 31.52, 30.75, 29.69, 29.08, 25.59, 22.66, 14.10, – 8.17. MALDI-TOF MS (m/z): calcd for C₂₇H₄₀S₃Sn₂ 700.03, found 700.03. #### 3,4'-Dioctyl-2,2'-bithiophene-5-carbaldehyde (6) Pd(PPh₃)₄ (2 mol %) was added a solution of 5-bromo-4-octylthiophene-2-carbaldehyde (10.0 g, 33.0 mmol) and trimethyl(4-octylthien-2-yl)stannane (14.2 g, 39.6 mmol) in toluene (100 mL) under N₂ and then the mixture was heated under reflux overnight. After pouring the mixture into water (200 mL), the organic phase was extracted with CH₂Cl₂; the combined extracts were washed three times with distilled water, dried (MgSO₄), and concentrated. The residue was purified through column chromatography (SiO₂; hexanes/CH₂Cl₂, 6:1) to provide a yellow solid (10.9 g, 79.3%). ¹H NMR (300 MHz, CDCl₃): 9.81 (s, 1H), 7.57 (s, 1H), 7.10 (s, 1H), 7.00 (s, 1H), 2.78 (t, J = 7.8 Hz, 2H), 2.60 (t, J = 7.6 Hz, 2H), 1.68–1.57 (m, 4H), 1.27 (m, 20H), 0.88 (t, J = 6.6 Hz, 6H). EIMS (m/z): calcd for C₂₅H₃₈OS₂ 418.23, found 419 [M⁺]. #### 5'-Bromo-3,4'-dioctyl-2,2'-bithiophene-5-carbaldehyde (7) Under a N_2 atmosphere and protection from light, *N*-bromosuccinimide (NBS, 4.70 g, 26.3 mmol) was added portion-wise to a solution of **6** (10.0 g, 23.9 mmol) in CHCl₃ (80 mL) and AcOH (80 mL) at 0 °C. The mixture was stirred for 4 h at room temperature and then water was added to quench the reaction. The aqueous phase was extracted three times with CH₂Cl₂; the combined extracts were washed sequentially with NaHCO₃ solution, brine, and water, dried (MgSO₄), and then concentrated under reduced pressure. The residue was purified through column chromatography (SiO₂; hexane/CH₂Cl₂, 6:1) to afford a yellow oil (8.5 g, 71.5%). ¹H NMR (300 MHz, CDCl₃): 9.82 (s, 1H), 7.57 (s, 1H), 6.97 (s, 1H), 2.74 (t, J = 7.8 Hz, 2H), 2.57 (t, J = 7.6 Hz, 2H), 1.61–1.55 (m, 4H), 1.30–1.55 (m, 20H), 0.88 (t, J = 6.6 Hz, 6H). EIMS (m/z): calcd for C₂₅H₃₈OS₂Br 496.214, found 497 [M⁺]. #### 3,4',4"-Trioctyl-2,2':5',2"-trithiophene-5-carbaldehyde (8) Compound **8** was prepared from **7** (5.00 g, 10.0 mmol), trimethyl(4-octylthien-2-yl)stannane (4.33 g, 12.1 mmol), and Pd(PPh₃)₄ (2 mol %) using the procedure described for the preparation of **6**; purification through column chromatography (SiO₂; hexane/CH₂Cl₂, 4:1) gave a yellow oil (4.98 g, 81.2%). ¹H NMR (300 MHz, CDCl₃): δ 9.81 (s, 1H), 7.58 (s, 1H), 7.10 (s, 1H), 6.99 (s, 1H), 6.93 (s, 1H), 2.81 (t, J = 8.4 Hz, 2H), 2.74 (t, J = 7.8 Hz, 2H), 2.59 (t, J = 7.5 Hz, 2H), 1.70–1.58 (m, 6H), 1.32–1.27 (m, 30H), 0.89–0.85 (m, 9H). EIMS (m/z): calcd for C₃₇H₅₆OS₃ 612.34, found 613 [M⁺]. ### 5"-Bromo-3,4',4"-trioctyl-2,2':5',2"-trithiophene-5-carbaldehyde (9) Compound **9** was prepared from **8** (4.00 g, 6.52 mmol) and NBS (1.27 g, 7.17 mmol) using the same procedure as that described for the preparation of **7**; purification through column chromatography (SiO₂; hexane/CH₂Cl₂, 4:1) gave a yellow oil (3.85 g, 85.3%). ¹H NMR (300 MHz, CDCl₃): δ 9.82 (s, 1H), 7.58 (s, 1H), 7.09 (s, 1H), 6.84 (s, 1H), 2.80 (t, J = 8.1 Hz, 2H), 2.74 (t, J = 7.8 Hz, 2H), 2.59 (t, J = 7.5 Hz, 2H), 1.64–1.58 (m, 6H), 1.33–1.27 (m, 30H), 0.88–0.86 (m, 9H). EIMS (m/z): calcd for C₃₇H₅₅OS₂Br 690.25, found 691 [M⁺]. #### **Compound 10** Octyl cyanoacetate (8.20 mL, 60.20 mmol) was added under N_2 to a solution of **7** (3.00 g, 6.02 mmol) in dry CHCl₃ (30 mL) and piperidine (3 drops) and then and resulting solution was stirred for 36 h at room temperature. The reaction mixture was extracted with CH_2Cl_2 and washed with water, dried (MgSO₄), and concentrated under reduced pressure. The residue was purified through column chromatography (SiO₂; hexane/CH₂Cl₂, 6:1) to afford a yellow solid (4.1 g, 90.5%). ¹H NMR (300 MHz, CDCl₃): 8.19 (s, 1H), 7.54 (s, 1H), 7.02 (s, 1H), 4.28 (t, J = 6.6 Hz, 2H), 2.74 (t, J = 7.8 Hz, 2H), 2.56 (t, J = 7.6 Hz, 2H), 1.71–1.54 (m, 6H), 1.31–1.27 (m, 30H), 0.89-0.85 (m, 9H). ¹³C NMR (75 MHz, CDCl₃): δ 163.01, 147.0, 144.57, 143.08, 141.10, 140.67, 139.51, 137.80, 133.02, 128.59, 115.88, 111.75, 98.04, 66.58, 31.85, 30.15, 29.66, 29.46, 29.32, 29.21, 29.18, 29.12, 28.52, 25.77, 22.63, 14.08. MALDI-TOF MS (m/z): calcd for $C_{36}H_{56}BrNO_2S_2$ 677.29, found 677.2. #### **Compound 11** Compound **11** was prepared from **9** (3.00 g, 4.33 mmol) and octyl cyanoacetate (5.90 mL, 43.4 mmol) using the same procedure as that described for the preparation of **10**; purification through column chromatography (SiO₂; hexane/CH₂Cl₂, 4:1) gave a red liquid (3.10 g, 82.2%). ¹H NMR (300 MHz, CDCl₃): 8.19 (s, 1H), 7.55 (s, 1H), 7.15 (s, 1H), 6.85 (s, 1H), 4.28 (t, J = 6.9 Hz, 2H), 2.80 (t, J = 7.5 Hz, 2H), 2.71 (t, J = 7.5 Hz, 2H), 2.56 (t, J = 7.8 Hz, 2H), 1.77–1.64 (m, 8H), 1.33–1.27 (m, 36H), 0.89–0.86 (m, 12H). ¹³C NMR (75 MHz, CDCl₃): δ 163.11, 146.0, 142.67, 141.69, 140.92, 140.58, 140.43, 134.62, 132.82, 132.77, 132.45, 130.62, 127.15, 115.98, 109.49, 97.63, 66.52, 31.82, 31.74, 30.56, 30.12, 29.66, 29.51, 29.43, 29.34, 29.22, 29.15, 29.13, 28.53, 28.46, 25.77, 22.63, 14.07. MALDI-TOF MS (m/z): calcd for C₄₈H₇₄BrNO₂S₃ 681.21, found 871.2. #### **BT4OT** A 50-mL two-neck flask charged with **5** (0.30 g, 0.40 mmol), **10** (0.73 g, 1.0 mmol), and Pd(PPh₃)₄ (5 mol %) was subjected to three cycles of vacuum purging followed by refilling with N₂. Anhydrous toluene (20 mL) was added via syringe and then the mixture was heated under reflux for 36 h. After cooling, the mixture was filtered through Celite to remove the metal catalyst and then the solids were washed with CH₂Cl₂. The combined solvents were concentrated under reduced pressure; the residue was purified through column chromatography (SiO₂; hexane/CH₂Cl₂, 6:1) to obtain a product, which was washed with hexane and acetone to afford a dark powder (0.34 g, 50.6%). 1 H NMR (300 MHz, CDCl₃): 8.22 (s, 2H), 7.72 (s, 1H), 7.60–7.57 (m, 3H), 7.57 (m, 1H), 7.46 (s, 1H), 7.30 (s, 2H), 4.33 (t, J = 7.2 Hz, 4H), 3.07 (t, J = 7.8 Hz, 2H), 2.94–2.86 (m, 8H), 1.86–1.79 (m, 14H), 1.34 (m, 72H), 0.94–0.91 (m, 21H). 13 C NMR (75 MHz, CDCl₃): δ 163.13, 145.94, 145.87, 141.86, 141.17,140.99, 140.52, 140.47, 140.31, 134.95, 134.17, 133.99, 133.18, 132.83, 132.69, 132.61, 132.31, 131.83, 131.23, 130.97, 130.91, 130.83, 130.01, 129.18, 128.89, 120.89, 120.16, 119.36, 116.62, 97.41, 66.50, 31.87, 31.84, 31.74, 31.57, 30.82, 30.53, 30.50, 30.08, 29.62, 29.56, 29.51, 29.48, 29.44, 29.42, 29.36, 29.29, 29.23, 29.16, 29.43, 28.54, 25.78, 22.64, 22.62, 14.08. MALDI-TOF MS (m/z): calcd for C₉₃H₁₃₀N₂O₄S₇ [M]⁺ 1563.807, found 1563.81. Anal. calcd for C₉₃H₁₃₀N₂O₄S₇: C, 71.40; H, 8.38; N, 1.79; found: C, 71.61; H, 8.20; N, 1.81. #### **BT6OT** **BT6OT** was prepared from **5** (0.30 g, 0.40 mmol), **11** (0.87 g, 1.0 mmol), and Pd(PPh₃)₄ (5 mol %), using the same procedure as that described for the preparation of BT4OT, as a dark powder (0.40 g, 47.7%). ¹H NMR (300 MHz, CDCl₃): 8.19 (s, 2H), 7.67 (s, 1H), 7.57–7.52(m, 3H), 7.42 (s, 1H), 7.19 (s, 2H), 7.06 (s, 2H), 4.28 (t, J = 6.9 Hz, 4H), 2.80 (t, J = 7.5 Hz, 4H), 2.71 (t, J = 7.5 Hz, 4H), 2.56 (t, J = 7.8 Hz, 4H), 1.84–1.73 (m, 16H), 1.50–1.10 (m, 96H), 0.89–0.87 (m, 27H). ¹³C NMR (75 MHz, CDCl₃): δ 163.13, 145.94, 145.67, 141.86, 141.17, 140.99, 140.52, 140.47,140.31, 134.95, 134.17, 133.99, 133.22, 133.18, 132.83, 132.69, 132.61, 132.31, 131.83, 131.23, 130.97, 130.91, 130.83, 130.01, 129.18, 128.89, 120.89, 120.16, 119.36, 116.02, 97.41, 66.50, 31.87, 31.84, 31.74, 31.57, 30.82, 30.53, 30.50, 30.08, 29.62, 29.56, 29.51, 29.48, 29.44, 29.42, 29.36, 29.29, 29.23, 29.16, 28.54, 25.78, 22.64, 22.62, 14.08. MALDI-TOF MS (m/z): calcd for $C_{109}H_{150}N_2O_4S_9$ [M]⁺ 1952.033, found 1952.04. Anal. calcd for $C_{109}H_{150}N_2O_4S_9$: C, 71.11; H, 8.21; N, 1.52; found: C, 71.30; H, 8.11; N, 1.54. Fig. S1(a) ¹H and (b) ¹³C NMR spectra of BT4OT. (a) Fig. S2.(a) ¹H and (b) ¹³C NMR spectra of BT6OT. (a) (b) Fig. S3. Mass spectra of (a) BT4OT and (b) BT6OT. (a) (b) Fig. S4 Absorption spectra of BT4OT (1 wt%) and BT4OT/PC $_{61}$ BM (1:0.75, w/w) spin-coated from CHCl $_{3}$ on glass substrates. Fig. S5 Absorption spectra of BT6OT (1 wt%), BT6OT:PC₆₁BM (1:0.75, w/w) and BT6OT:PC₇₁BM (1:0.75, w/w) spin-coated from CHCl₃ on glass substrates. Fig. S6 J–V curves of BHJ solar cells incorporating BT4OT:PC₆₁BM films with blend ratios of 1:0.5, 1:0.75, and 1:1 (w/w) under AM 1.5 G illumination (100 mW/cm²). Fig. S7. *J*–*V* curves of BHJ solar cells incorporating BT6OT:PC₆₁BM films with blend ratios of 1:0.5, 1:0.75, and 1:1 (w/w) under AM 1.5 G illumination (100 mW/cm²). Fig. S8 *J*–*V* curves of (a) hole and (b) electron mobility devices based on BT6OT films incorporating various weight ratios of PC₇₁BM and various amounts (vol%) of CN. Fig. S9 AFM images of BT6OT:PC₇₁BM film spin-coated from CHCl₃ solutions at blend ratios of (a) 1:0.5, (b) 1:0.75, and (c) 1:1 (w/w); root mean square roughnesses (R_{rms}) were (a) 0.79, (b) 1.54, and (c) 2.61 nm. **Table S1.** Performance of BHJ photovoltaic devices incorporating films of BT4OT or BT6OT blended with $PC_{61}BM$ at various weight ratios | Weight ratio of small molecule to PC ₆₁ BM ^a | Blend ratio (w/w) | $V_{oc}(V)$ | $J_{\rm sc}$ (mA/cm ²) | FF (%) | PCE (%) | |--|-------------------|-------------|------------------------------------|--------|---------| | BT4OT | 1:0.50 | 0.87 | 5.10 | 49.4 | 2.19 | | BT4OT | 1:0.75 | 0.88 | 6.32 | 53.6 | 2.98 | | BT4OT | 1:1 | 0.87 | 5.79 | 51.2 | 2.58 | | BT6OT | 1:0.50 | 0.84 | 6.26 | 51.9 | 2.72 | | BT6OT | 1:0.75 | 0.86 | 6.78 | 54.8 | 3.19 | | BT6OT | 1:1 | 0.85 | 6.47 | 49.2 | 2.70 | ^a Device with Ca/Al as cathode.