The room temperature formation of gold nanoparticles from the reaction of cyclohexanone and auric acid; a transition from dendritic particles to compact shapes and nanoplates

Madeeha A. Uppal,^[a] Andreas Kafizas,^[b] Michael B. Ewing^[a] and Ivan P. Parkin^{*[a]}

 Mrs. Madeeha A. Uppal, Prof. Michael B. Ewing and Prof. Ivan P. Parkin Department of Chemistry University College London
20 Gordon Street, London, WC1H 0AJ
Fax: +44 (0)20 7679 7463
E-mail: <u>i.p.parkin@ucl.ac.uk</u>

[b] Dr. Andreas Kafizas Department of Chemistry Imperial College London South Kensington Campus, London SW7 2AZ

Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author.

Supplementary Information 1

Figure S1: ¹³C NMR spectrum of pure cyclohexanone standard (600 MHz, D₂O)

Supplementary Information 2

Figure S3: Zoomed in ¹³C NMR spectra (600 MHz, D₂O) across four key regions of δ ppm where the top spectrum in the series represents a gold nanoparticle solution (diluted by a factor of 100) formed from the reaction of auric acid (0.28 mM) and cyclohexanone (0.48 M) in D₂O at room temperature after 1 hr and the bottom spectrum in the series represents cyclohexanone alone in D₂O (0.48 M). The peaks highlighted in dotted red relate were identified as 2-chlorocyclohexanone environments

Supplementary Information 3(b)

Figure S3: Zoomed in ¹³C NMR spectra (600 MHz, D_2O) across four key regions of δ ppm where the top spectrum in the series represents a gold nanoparticle solution (diluted by a factor of 100) formed from the reaction of auric acid (0.28 mM) and cyclohexanone (0.48 M) in D_2O at room temperature after 1 hr and the bottom spectrum in the series represents cyclohexanone alone in D_2O (0.48 M). The peaks highlighted in dotted red relate were identified as 2-chlorocyclohexanone environments

Supplementary Information 3(c)

Figure S3: Zoomed in ¹³C NMR spectra (600 MHz, D_2O) across four key regions of δ ppm where the top spectrum in the series represents a gold nanoparticle solution (diluted by a factor of 100) formed from the reaction of auric acid (0.28 mM) and cyclohexanone (0.48 M) in D_2O at room temperature after 1 hr and the bottom spectrum in the series represents cyclohexanone alone in D_2O (0.48 M). The peaks highlighted in dotted red relate were identified as 2-chlorocyclohexanone environments

Figure S3: Zoomed in ¹³C NMR spectra (600 MHz, D₂O) across four key regions of δ ppm where the top spectrum in the series represents a gold nanoparticle solution (diluted by a factor of 100) formed from the reaction of auric acid (0.28 mM) and cyclohexanone (0.48 M) in D₂O at room temperature after 1 hr and the bottom spectrum in the series represents cyclohexanone alone in D₂O (0.48 M). The peaks highlighted in dotted red relate were identified as 2-chlorocyclohexanone environments