Supporting information

Facile synthesis of hierarchical porous flowerlike NiCo₂O₄ with superior lithium storage properties

Linlin Li,^{*a,b*} Yanling Cheah,^{*a*} Yahwen Ko,^{*a*} Peifen Teh,^{*a*} Grace Wee,^{*a*} Chuiling Wong,^{*a*}

Shengjie Peng,*^{*a*} and Madhavi Srinivasan*^{*a,b*}

^a School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang

Avenue, Singapore, 639798. E-mail: sipeng@ntu.edu.sg; madhavi@ntu.edu.sg

^b TUM-CREATE Center for Electromobility, Nanyang Technological University, 62 Nanyang

Drive, Singapore 637459

Fig. S1 EDX pattern of flowerlike NiCo₂O₄.

Fig. S2 TGA curve of Ni-Co-based intermediate.

Fig. S3 FTIR spectra of (a) PVP, (b) Ni-Co-based intermediate, and (c) hierarchical porous flowerlike $NiCo_2O_4$ after calcination at 450 °C for 1 h in air.

Fig. S4 FESEM images of the as-prepared Ni-Co-based intermediate hydrothermally prepared at 180 °C for 20 h using 0.1 g PVP.

Fig. S5 N_2 adsorption/desorption isotherm curve of Ni-Co-based intermediate. The inset is the corresponding pore size distribution.

Fig. S6 FESEM images at low-magnification of Ni-Co-based intermediate obtained at 180 °C with different time duration: a) 1 h; b) 3 h; c) 8 h; d) 15 h.

Fig. S7 FESEM images of the sample prepared with different amounts of PVP after calcination at 450 °C for 1h: (a, b) 0 g; (c, d) 0.05 g; and (e, f) 0.2 g. Other conditions are unchanged.

Fig. S8 Comparative cycling performance of different sample at the same current density of 100 mA g^{-1} .

(a)	Re	CPE(sf+			₩
(b)	Cycle Number	$R_{(sf^+ct)}/\Omega$	CPE _(sf+dl) /µF	R_b/Ω	CPE _b /mF
	Fresh	16	27	-	-
	5th	43	30	25	0.017
	10th	61	31	23	0.009
	20th	66	31	18	0.011

Fig. S9 (a) The equivalent circuit which is used to fit the experimental data; (b) Fitted data extracted from EIS spectra in different cycles.