Supporting Information

Graphene-based surface modification on layered Li-rich cathode for

high-performance Li-ion batteries

Bohang Song,¹Man On Lai,¹ Zongwen Liu,² Hongwei Liu² and Li Lu^{*1}

¹ Materials Science Laboratory, Department of Mechanical Engineering, National University of Singapore, 117576, Singapore.

² School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia.

E-mail: luli@nus.edu.sg

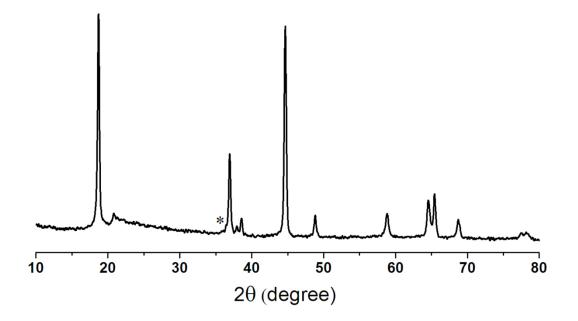
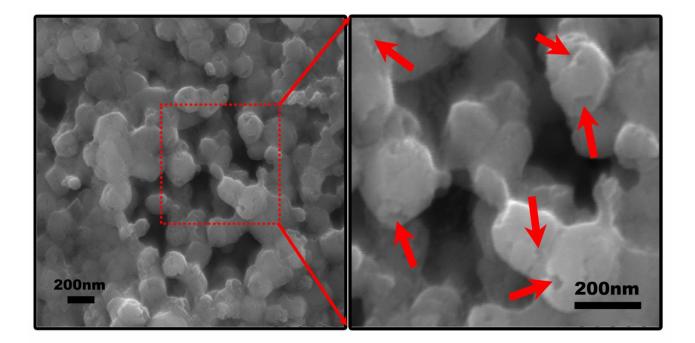



Figure S1. XRD pattern of LLNCM/LAA-350 sample including a spinel-like phase labeled as *.

Figure S2. SEM images of LLNCM/LAA-350 powders in which the arrows indicate the collapse regions of particle surfaces after LAA and the following 350 °C heat treatment.

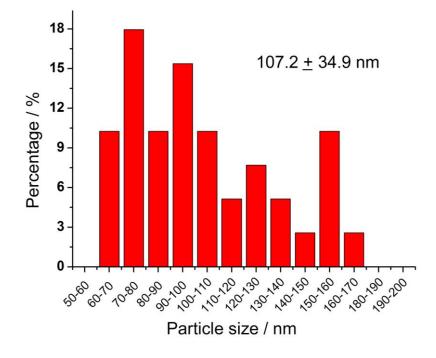


Figure S3. Particle size distributions of bare $Li(Li_{0.2}Mn_{0.54}Ni_{0.13}Co_{0.13})O_2$.

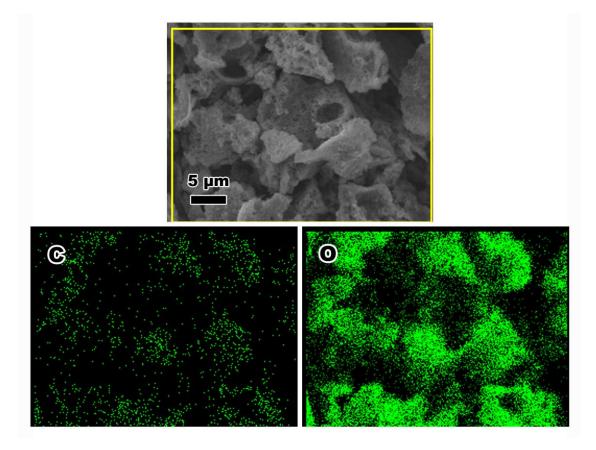


Figure S4. SEM image and corresponding carbon and oxygen elemental mapping of LNCMO/GO

composite.

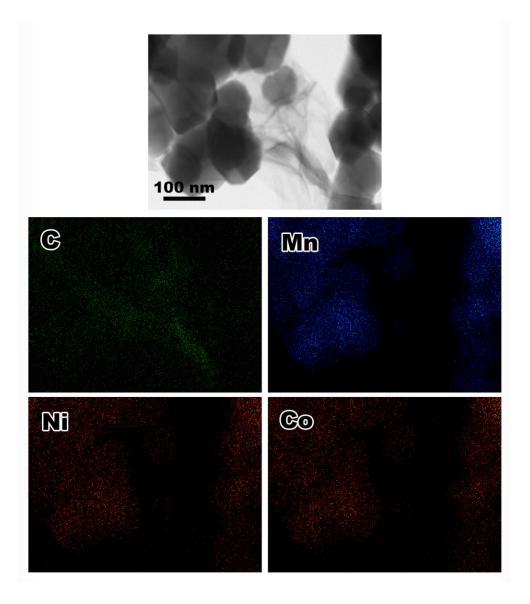
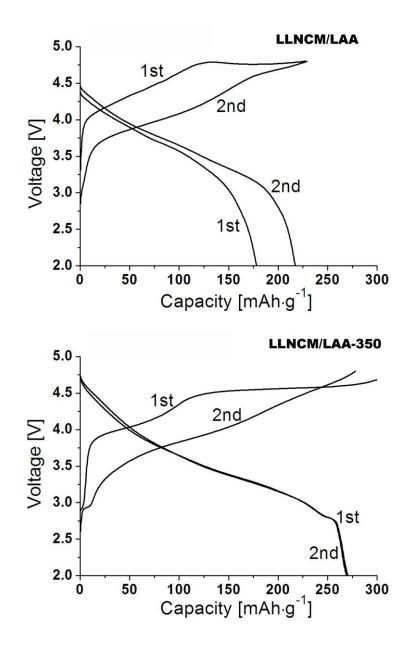
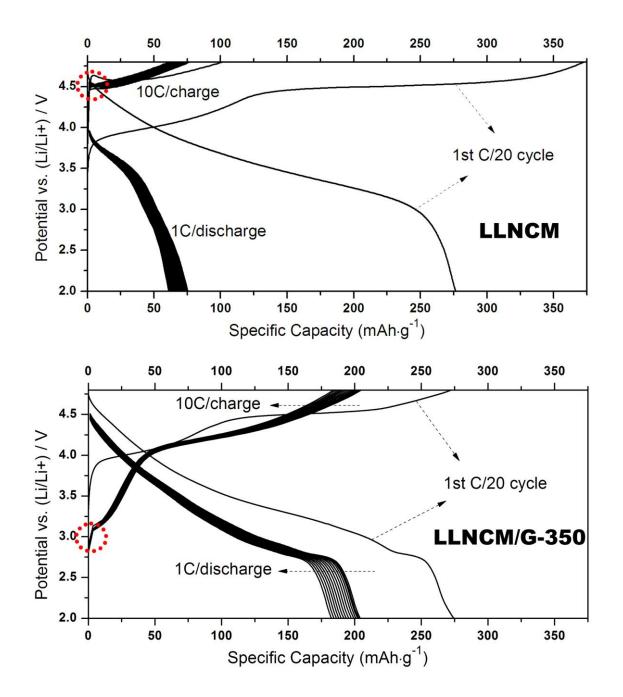




Figure S5. TEM image and corresponding carbon, manganese, nickel and cobalt elemental mapping of

LLNCM/GO composite.

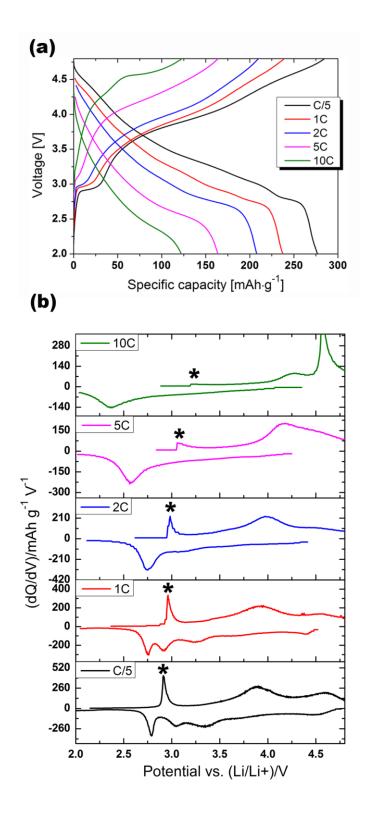


Figure S6. First and second charge/discharge curves of LLNCM/LAA and LLNCM/LAA-350 samples cycled between 2.0 and 4.8 V at 50 mA·g⁻¹ (0.2 C).

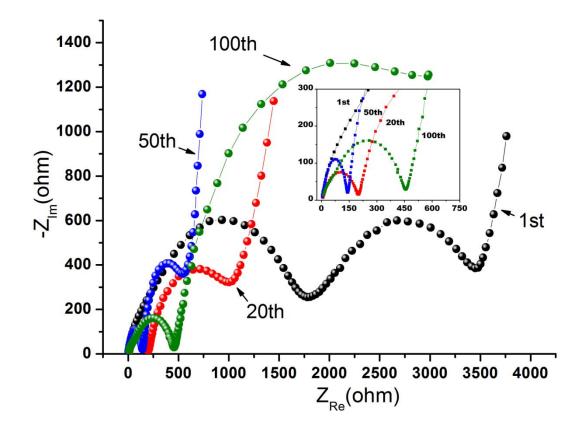


Figure S7. 10C-charge/1C-discharge curves after a first forming cycle of LLNCM/G-350 and LLNCM samples cycled between 2.0 and 4.8 V where 1 C corresponds to 250 mA·g⁻¹. The red dot cycles indicate the various polarization effects caused by the high charging rate of 10 C.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2013

Figure S8. Charge/discharge curves (a) and corresponding dQ/dV plots (b) of LLNCM/G-350 sample obtained from the same testing of Fig. 9 (d). Symbol * indicates the charging peaks resulted from the Li reinsertion into surface-spinel framework.

Figure S9. EIS spectra of cycled LLNCM/GO cathode material at 1st, 20th, 50th and 100th cycles. Before the EIS measurement, the half cell was charged to the cutoff voltage of 4.8 V, then discharged to 3.5 V at 0.05 C, and held at 3.5 V for another 3 h. In between of two individual cycles, 2 C current density was used to cycle the half cell where 1 C stands for 250 mA·g⁻¹.

Table S1. Surface quantification of chemical composition for LLNCM, LLNCM/GO, LLNCM/G-250

	Li		0				
	LI	Mn	Ni	Co	Total	0	
LLNCM	1.01	0.53	0.23	0.23	0.99	2.8	
LLNCM/GO	0.76	0.68	0.34	0.22	1.24	5.3	
LLNCM/G-250	0.66	0.94	0.25	0.16	1.35	3.1	
LLNCM/G-350	0.64	1.1	0.15	0.13	1.38	3.4	

and LLNCM/G-350 samples, as analyzed from XPS results.

Table S2. Charge/discharge capacities at various cycling states of LLNCM, LLNCM/GO, LLNCM/G-

250 and LLNCM/G-350 cathodes, which were cyc	eled between 2.0 and 4.8 V at 50 mA \cdot g ⁻¹ .
--	---

Sample	1^{st} cycle (mAh·g ⁻¹)		3^{rd} cycle (mAh·g ⁻¹)		5^{th} cycle (mAh·g ⁻¹)		$20^{\text{th}} \text{ cycle } (\text{mAh} \cdot \text{g}^{-1})$		$50^{\text{th}} \text{ cycle } (\text{mAh} \cdot \text{g}^{-1})$	
	charge	discharge	charge	discharge	charge	discharge	charge	discharge	charge	discharge
LLNCM	300	253	247	243	247	243	217	216	181	181
LLNCM/GO	263	238	250	244	241	237	203	201	191	189
LLNCM/G- 250	261	262	262	257	257	252	232	229	197	194
LLNCM/G- 350	260	268	270	264	266	260	240	236	206	203