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The specific capacitance with three-electrode system is derived from CVs can be
calculated, using Equation S1:
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where C is the specific capacitance, AV is the potential window (1 V), A is the areal
area of the porous electrode materials, Viiiama 1S the starting/end potential in one
cycle, [1] is the instantaneous current at a given potential, and dV/dt is the potential
scan rate.

The specific capacitance with two-electrode configuration based on CVs can be
obtained from the following Equation S2:
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where C is the specific capacitance, AV is the potential window (2 V), A is the areal
area of the porous electrode materials, V;,aa 1S the starting/end potential in one
cycle, [1] is the instantaneous current at a given potential, and dV/dt is the potential
scan rate.

The specific capacitance determined by GCD curves can be calculation based on
Equation S3:
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where C is the specific capacitance, | is the discharge current, At is the discharge time
in the potential window, A is the areal area of the porous electrode materials, 4V is the
potential window, I/A is the discharge current density.

Using the galvanostatic charge/discharge curves, the energy density and power
density can be calculated following the Equations S4 and S5 as shown:
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where De is the energy density, C is the specific capacitance values, AV is the potential
window of discharge, Dy is the power density, 4¢ is the discharge time in potential
window.

The average discharge current can be obtained based on the Equation S6:

f[dV
7, =
oAV (S6)

where lq is the average discharge current, | is the current at certain potential, AV is the
potential window of discharge.

The mean areal cell capacitance is calculated by the slope of the straight line in Figure
4 (d) and Figure S6 (b, c), using the following Equation S7:
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where Cy, is the mean areal cell capacitance, 47 and Av are the difference of
discharge currents and scan rates on the straight line, A is the areal area of the
as-prepared electrode.



Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A
This journal is © The Royal Society of Chemistry 2013

Supplementary Figures

Figure S1. (a) A digital photograph of an as-prepared LNO/NIO thin film. (b, ¢) The
three-electrode and two-electrode electrochemical configurations were used in the
experiment test, respectively. (d) Schematic of the assembled structure used in the

two-electrode system with organic electrolyte.

Figure S2. (a-c) FESEM images for the surface morphologies of the as-prepared
LNO/NIO films annealed at 550°C, 600°C, and 650°C, respectively.

Figure S3. (a-c) Crystalline structures of the samples annealed at 550°C, 600°C, and
650°C, respectively.
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Figure S4. (a, b) CVs of the samples annealed at 550°C  with different scan rates from
0.1to 50 Vs™; (c, d) CVs of the samples annealed at 600°C  with different scan rates
from 0.1 to 50 Vs™.
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Figure S5. (a) CVs of the three samples with the scan rate of 100 Vs™; (b, c)
Discharge currents of the samples annealed at 550°C and 600°C, respectively, with
the scan rate from 0.1 up to 100 V s,
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Figure S6. (a) Specific capacitance derived from CVs in the aqueous electrolyte as
function of scan rate for the three as-prepared electrodes. (b) Specific capacitance vs.
scan rate from 0.001 Vs™ to 100 Vs™in the organic electrolyte for the sample annealed
at 650°C.
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Figure S7. (a) Nyquist plots for the three as-prepared films, the inset presents the
expanded plots at high frequency region; (b) Equivalent circuit derived from Nyquist
plots.



