Supporting Information

Thermo-cleavable fullerene materials as a buffer layer for efficient polymer solar cells

Shan Chen,[‡]^{*a,b*} Xiaoyan Du,[‡]^{*a,b*} Gang Ye,^{*a*} Jiamin Cao,^{*a,b*} Hao Sun,^{*c*} Zuo Xiao^{**a*} and Liming Ding^{**a*}

^a National Center for Nanoscience and Technology, Beijing 100190, China
E-mail: OPV.CHINA@yahoo.com, xiaoz@nanoctr.cn ^b University of Chinese Academy of Sciences, Beijing 100049, China
^c Bruker (Beijing) Scientific Technology Co., Ltd, Beijing 100081, China
‡ S. Chen and X. Du contributed equally to this work.

1. General characterization

NMR spectra were measured on a Bruker AVANCE-400 spectrometer. Mass spectra were measured on a Bruker Apex IV FIMS spectrometer. UV-Vis absorption spectra were recorded on a SHIMADZU UV-1800 spectrophotometer. IR spectra were measured by a Nicolet Magna 750 FTIR Spectrometer. Cyclic voltammetry (CV) was performed using a SHANGHAI CHENHUA CHI620D voltammetric analyzer. CV measurements were carried out in a cell under Ar gas, equipped with a glassy-carbon working electrode, a platinum wire counter electrode, and a Ag/Ag⁺ reference electrode. Measurements were performed in ODCB/CH₃CN (9:1) solution containing tetrabutylammonium hexafluorophosphate (TBAPF₆, 0.1 M) as a supporting electrolyte with a scanning rate of 0.1 V/s. All potentials were corrected against Fc/Fc⁺. Thermogravimetric analysis (TGA) was carried out by a PerkinElmer

Diamond TG/DTA thermal analyzer. AFM characterization was carried out on a Dimension ICON microscope (Bruker) (tapping mode). Contact angle measurements were performed using a Kaüss DSA-100 instrument.

2. Synthetic procedures and spectra data

P3HT was purchased from Rieke Metals Inc. PBDTTT-C was purchased from Solarmer Materials Inc. C_{60} and C_{70} were purchased from YongXin Co. (China). Reagents and chemicals were purchased from Alfa-Aesar Co., TCI Co., or other commercial suppliers and used as received. $PC_{61}BM$, $PC_{71}BM$, and $CHBr(COO^{t}Bu)_{2}$ were synthesized according to literature.¹⁻³

Scheme S1 Synthetic route for bis(2-methylhexan-2-yl) 2-bromomalonate.

Synthesis of bis(2-methylhexan-2-yl) malonate

Malonic acid (2 g, 19.2 mmol), 2-methylhexan-2-ol (4.46 g, 38.4 mmol), N,N'-Dicyclohexylcarbodiimide (DCC) (7.96)38.4 g, mmol) and 4-Dimethylaminopyridine (DMAP) (60 mg,) were added into toluene (40 mL), and stirred at room temperature for 3 h (Scheme S1). Then, toluene was removed by vacuum rotary evaporation. The residue was purified by silica gel column chromatography (petroleum ether/chloroform(1:1) as the eluent) and afforded bis(2-methylhexan-2-yl) malonate (1.52 g, yield: 26%). ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 3.19 (s, 2H), 1.78-1.70 (m, 4H), 1.45 (s, 12H), 1.30 (m, 8H), 0.90 (t, J = 6.6 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 14.82, 23.77, 26.64, 26.81, 41.38, 45.22, 84.77, 166.83.

Synthesis of bis(2-methylhexan-2-yl) 2-bromomalonate

Bis(2-methylhexan-2-yl) malonate (520 mg, 1.73 mmol) was dissolved in THF (100 mL) at 0 °C. DBU (260 µL, 1 mmol) was added at 0 °C. The reaction was warmed up to room temperature for 1 h, then cooled to -78 °C and CBr₄ (575 mg, 1.73 mmol) was added (Scheme S1). The mixture was stirred for 3 h at -78 °C and quenched with saturated aqueous solution of NH₄Cl. The phases were separated and hexane was added to the organic phase. The organic part was washed twice with brine. The aqueous part was extracted twice with CH₂Cl₂. The organic parts were combined, dried over anhydrous magnesium sulfate and concentrated by vacuum rotary evaporation. The residue was purified by silica gel column chromatography (diethyl the eluent) afforded ether/n-hexane(1:4)as and bis(2-methylhexan-2-yl) 2-bromomalonate (220 mg, yield: 34%). ¹H NMR (CDCl₃, 400 MHz,) δ (ppm): 4.66 (s, 1H), 1.79 -1.74 (m, 4H), 1.47 (s, 12H), 1.31 (m, 8H), 0.91 (t, J = 6.7 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 14.79, 23.72, 26.31, 26.46, 26.70, 41.27, 46.52, 87.08, 164.30.

Fig. S1 ¹H NMR (in CDCl₃, top) and ¹³C NMR (in CDCl₃/CS₂, bottom) of DBMD.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is C The Royal Society of Chemistry 2013

Fig. S2 ¹H NMR (in CDCl₃, top) and ¹³C NMR (in CDCl₃, bottom) of BMHMD.

Fig. S3 ¹H NMR (in CDCl₃, top) and ¹³C NMR (in CDCl₃, bottom) of bis-DBMD.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013

Fig. S4 ¹H NMR of MCA1 (in THF-*d*₈/CS₂/CDCl₃/ODCB-*d*₄)

Fig. S5 ¹H NMR of MCA2 (in THF- d_8/CS_2).

4. IR spectra

Fig. S6 IR spectra for (a) DBMD and MCA1, (b) BMHMD and MCA1, and (c) bis-DBMD and MCA2.

5. CV measurements

Fig. S7 Cyclic voltammograms of DBMD, BMHMD, bis-DBMD, $PC_{61}BM$, and $PC_{71}BM$.

Table S1 Half-wave reduction potentials and LUMO energy levels of DBMD,
BMHMD, bis-DBMD, $PC_{61}BM$, and $PC_{71}BM$.

Fullerenes	E _{1/2} ^{Red1} [V]	E _{1/2} ^{Red2} [V]	E _{1/2} ^{Red3} [V]	LUMO ^a [eV]
DBMD	-1.11	-1.48	-1.97	-3.69
BMHMD	-1.09	-1.48	-1.96	-3.71
bis-DBMD	-1.18	-1.55		-3.62
PC ₆₁ BM	-1.13	-1.51	-2.01	-3.67
PC ₇₁ BM	-1.12	-1.50	-1.89	-3.68

^{*a*} LUMO level = -($E_{1/2}^{\text{Red1}}$ + 4.8) eV ⁴

6. Effect of MCA1 in active layer on device performance

Fig. S8 J-V curves for ITO/ZnO/P3HT:PC₆₁BM (1:1, w/w)/MoO₃/Ag (device A) and ITO/ZnO/P3HT:PC₆₁BM:MCA1 (17:17:0.1, w/w/w)/MoO₃/Ag (device A').

Device	V _{oc} [V]	J _{sc} [mA cm⁻²]	FF [%]	PCE [%]
А	0.58	11.3	53	3.44
A'	0.42	9.3	45	1.78

7. AFM images

Fig. S9 AFM height (left) and phase (right) images of P3HT/PC₆₁BM blend films: (a) on ZnO, (b) on MCA1-modified ZnO, and (c) on MCA2-modified ZnO ($1.0 \ \mu m \times 1.0 \ \mu m$).

References

- 1 J. C. Hummelen, B. W. Knight, F. LePeq and F. Wudl, J. Org. Chem., 1995, 60, 532.
- 2 M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van

Hal and R. A. J. Janssen, Angew. Chem. Int. Ed., 2003, 42, 3371.

- 3 S. Perreault and C. Spino, *Org. Lett.*, 2006, **8**, 4385.
- 4 Y. Matsuo, A. Iwashita, Y. Abe, C. Z. Li, K. Matsuo, M. Hashiguchi and E.

Nakamura, J. Am. Chem. Soc., 2008, 130, 15429.