Supplementary Information

Conformal N-doped carbon on nanoporous TiO₂ spheres as a high-performance anode material for lithium-ion batteries

Yun Qiao, Xianluo Hu,* Yang Liu, Chaoji Chen, Henghui Xu, Dongfang Hou, Pei Hu, and Yunhui Huang*

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

* Corresponding author

E-mail: huxl@mail.hust.edu.cn; huangyh@mail.hust.edu.cn.

Fig. S1 Digital photos for the powder samples. (a) nanoporous TiO₂ spheres; (b) TiO₂@NC nanocomposite.

Fig. S2 High-resolution XPS O 1s spectra for the TiO2@NC nanocomposite.

Fig. S3 CV curves for the nanoporous TiO₂ spheres and the TiO₂@NC nanocomposite at a scan rate of 0.2 mV s⁻¹ (from the second to the forth).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Fig. S4 Charge and discharge curves for (a) the nanoporous TiO_2 spheres and (b) the $TiO_2@NC$ nanocomposite at current densities varying from 0.1 to 2.0 A g⁻¹ each for 10 cycles.

Fig. S5 Electrochemical impedance spectra of the electrodes made of the pure porous

 TiO_2 nanospheres and the as-formed $TiO_2@NC$ hybrid.

Fig. S6 Cycling performance of the $TiO_2@C$ and $TiO_2@NC$ electrodes at a current density of 100 mA g⁻¹.

Fig. S7 Cycling performances of the nanoporous TiO₂ spheres and the TiO₂@NC nanocomposite after rate

performance shown in Fig.7c.

Fig. S8 XRD patterns and FESEM images of TiO₂@NC-0 (a and b), TiO₂@NC-1 (c and d), TiO₂@NC-3 (e and f).

The TiO₂@NC-0 sample without ILs is composed of anatase and rutile, the high intensity of rutile indicates its content is not just a little. However, the XRD patterns of TiO₂@NC-1 and TiO₂@NC-3 with different amount of ILs are consistent with the TiO₂@NC-2 and nanoporous TiO₂ spheres. It demonstrates that the addition of ILs had a great effect on restrainting the transformation to rutile from anatase. The morphology of TiO₂@NC-3 is relatively agglomerated than the other samples, because the adsorption ability of nanoporous TiO₂ spheres reaches the super-saturation state.

Fig. S9 TG curves of the TiO₂@NC nanocomposites at a heating rate of 10 °C min⁻¹ in flowing air. The large weight loss below 400 °C in TG curves corresponds to the removal of absorbed water from the sample and the decomposition of partial carbon.

Fig. S10 HRTEM images for (a) the TiO $_2$ @NC-1 composite and (b) the TiO $_2$ @NC-3 composite.