Supplementary Information

Amphiphilic Poly(N-vinyl Pyrrolidone) Grafted Graphene by Reversible Addition and Fragmentation Polymerization: Reinforcement of Poly(vinyl

acetate) Films

Rama K. Layek, Atanu Kuila, Dhruba P. Chatterjee and Arun K. Nandi*

Polymer Science Unit,

Indian Association for the Cultivation of Science,

Jadavpur, Kolkata – 700032

INDIA.

* For correspondence : A.K.Nandi, email : psuakn@iacs.res.in

Solvent	δρ	δ_{h}	$\delta_{\rm P}$ + $\delta_{\rm H}$
Hexane	0	0	0
Petroleum ether	0	0	0
CCl ₄	0	0.6	0.6
Benzene	0	2.0	2.0
Toluene	1.4	2.0	3.4
Xylene	1	3.1	4.2
Chlorobenzene	4.3	2.0	6.3
Diethyl ether	2.9	5.1	8.0
CHCl ₃	3.1	5.7	8.8
1,4-diocane	1.8	7.4	9.2
Dichlorobenzene	6.3	3.3	9.6
DCM	6.3	6.1	12.4
Ethyl acetate	5.3	7.2	12.5
THF	5.7	8	13.7
Acetone	10.4	7	17.4
NMP	12.3	7.2	19.5
CH ₃ CN	18.0	6.1	24.1
DMF	13.7	11.3	25
DMSO	16.4	10.2	26.6
Ethanol	8.8	19.4	28.2
Methanol	12.3	22.3	34.6
Water	16.0	42.3	58.3

SI Table 1. Hansen solubility parameters of different solvents

_

Sample	Strain % at break	Stress at break (MPa)	% Increase of stress at break	Young's modulus (GPa)	% Increase of Young's modulus	Toughness (Nmm)	% increase of toughness
PVAc	518 ±7.5	7 ±0.3	-	1.47±0.07	-	241.2±10.5	
GP1	506.6 ±6.1	13.1 ±.2	62	2.7±0.1	63	461.6±12.8	91
GP3	474 ±5.7	16.9 ±0.7	126	3.1±0.1	107	511.9±8.6	112
GP5	385.5± 5.6	18.8 ±1.2	169	4.2±0.09	180	449±9.5	86

SITable-2. Mechanical properties (stress, strain, modulus and toughness) of PVAc and PVAc / GP nanocomposites at 30^oC

 ${\bf SI}\ {\bf Fig.1}\ {\bf H}{\bf R}{\bf T}{\bf E}{\bf M}\ {\rm images}\ {\rm of}\ (a)\ {\bf GO}\ {\rm and}\ (b)\ {\bf GP}$

SI Figure 2. WAXS pattern of GO, PVAc and its nanocomposite with GP at indicated composition

SI Figure 3. 1st derivative of DSC heating endotherm to obtain glass transition temperature