## The influence of 1D, meso- and crystal structures on charge transport and recombination in solid-state dye-sensitized solar cells

Pablo Docampo,<sup>a</sup> Aruna Ivaturi,<sup>b</sup> Robert Gunning,<sup>a</sup> Sandra Diefenbach,<sup>c</sup> James Kirkpatrick,<sup>a</sup> Claudia M. Palumbiny,<sup>c</sup> Varun Sivaram,<sup>a</sup> Hugh Geaney,<sup>d</sup> Lukas Schmidt-Mende,<sup>c, e</sup> Mark E. Welland,<sup>b</sup> and Henry J. Snaith<sup>\*, a</sup>

<sup>a</sup> Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom. E-mail: h.snaith1@physics.ox.ac.uk

<sup>b</sup> Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J J Thomson av., Cambridge CB3 0FF, United Kingdom <sup>c</sup> Department of Physics and Center for NanoScience, Amalienstr. 54 80799 München

<sup>d</sup> Somewhere in Ireland. Probably Dublin

<sup>e</sup> Department of Physics, University of Konstanz, 78457 Konstanz, Germany

## **Supporting Information**



**Figure S1.** Wide Angle X-Ray diffraction data for SnO<sub>2</sub> nanowire films (left) and ZnO nanowire films (right).



**Figure S2.** Wide Angle X-Ray diffraction data for a range of sintering temperatures of (left)  $TiO_2$  nanotubes and (right) its corresponding peak width for each temperature.



**Figure S3.** Cross-sectional SEM images of flat dye-sensitized ZnO layers on FTO, covered with a range of increasing spiro concentrations (a) to (e) and capped with a silver cathode.