Electronic Supplementary Information (ESI) for

Ordered mesoporous Co₃O₄ spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts

Young Jin Sa,[‡]^{*a*} Kyungjung Kwon,[‡]^{*b*} Jae Yeong Cheon,^{*a*} Freddy Kleitz^{*c*} and Sang Hoon Joo^{* *a*}

^a School of Nano-Bioscience and Chemical Engineering, KIER-UNIST Advanced Center for Energy, and Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 689-798, Republic of Korea. *E-mail:* shjoo@unist.ac.kr; Fax: +82 52 217 2509; Tel: +82 52 217 2522
^b Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 143-747, Republic of Korea.
^c Department of Chemistry and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Quebec G1V 0A6, QC, Canada.

‡These authors contributed equally to this work

Sample	BET surface area	Catalyst loading (mg_cm ⁻²)	Elec- trolyte	Overpotential @ 10 mA cm	Tafel slope (mV dec ⁻¹)	Mass activity @ 1.6 V	Ref.
	$(\mathbf{m}^2 \mathbf{g}^{-1})$	(mg _{cat} cm)		(mv)		$(\mathbf{A} \mathbf{g}_{cat}^{-1})$	
meso-Co ₃ O ₄ -35	135	0.10	0.1 M KOH	411	80	63	This work
meso-Co ₃ O ₄ -100	114	0.10	0.1 M KOH	426	66	53	This work
Co ₃ O ₄ NPs	58	0.10	0.1 M KOH	449	63	31	This work
Commercial Co ₃ O ₄	N/A	0.10	0.1 M KOH	N/A	85	8	This work
20 wt% Pt/C	N/A	0.10 (0.02) ^{<i>a</i>}	0.1 M KOH	634	250	9.8 (49) ^{<i>a</i>}	This work
20 wt% Ir/C	N/A	0.10 (0.02) ^{<i>a</i>}	0.1 M KOH	409	126	71.2 (356) ^{<i>a</i>}	This work
CoO/CNT	170	0.05	1 M KOH	550	108	43	[1]
Mesoporous Co ₃ O ₄	156	0.13	0.1 M KOH	525	N/A	22	[2]
6 nm Co ₃ O ₄ NPs	111	1.00	1 M KOH	328	~70	35	[3]

Table. S1 Comparison of experimental conditions and OER activities of catalysts

^a Numbers in parenthesis are values normalized by weight of only metal (Pt or Ir).

References for Table 1

- 1. J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng and Y. Xie, Nano Res., 2012, 5, 521–530.
- 2. H. Tüysüz, Y. J. Hwang, S. B. Khan, A. M. Asiri and P. Yang, Nano Res., 2013, 6, 47-54.
- 3. A. J. Esswein, M. J. McMurdo, P. N. Ross, A. T. Bell and T. D. Tilley, *J. Phys. Chem. C*, 2009, **113**, 15068–15072.

Fig. S1 Low-angle XRD patterns for KIT-6 silica templates.

Fig. S2 TEM images of (a) KIT-6-100 and (b) KIT-6-35 silica templates.

Fig. S3 (a) Nitrogen adsorption-desorption isotherms for KIT-6 silica templates. The adsorption data for KIT-6-35 was offset vertically by $500 \text{ cm}^3 \text{ g}^{-1}$. (b) The corresponding pore size distribution curves from adsorption branches of the isotherms.

Fig. S4 Plot showing the calibration of an Hg/HgO reference electrode conducted with respect to the RHE

Fig. S5 Plot showing overpotentials for OER polarization at a current density of 10 mA cm^{-2} against the log of the BET surface areas of Co-based catalysts.