Electronic Supporting Information

Copolymerization of Terephthalaldehyde with Pyrrole, Indole and Carbazole Gives Microporous POFs Functionalized with Unpaired Electrons

Alexandros P. Katsoulidis, Scott M. Dyar, Raanan Carmieli, Christos D. Malliakas, Michael R. Wasielewski and Mercouri G. Kanatzidis Scheme S1 Starting materials for Pyr-POF, Ind-POF and Car-POF

Pyrrole

Terephthalaldehyde

Indole

Carbazole

Figure S1 XRD patterns of Pyr-POF-1, Pyr-POF-2, Ind-POF and Car-POF. The broad peaks at 18° and 42° come from the tape that was used on the glass slide.

Figure S2 Thermogravimetric analysis of Pyr-POF-1 and Pyr-POF-2 under N_2 flow

Figure S3 Thermogravimetric analysis of Ind-POF and Car-POF under N_2 flow

Figure S4 The pore size distribution of Pyr-POF-1, Pyr-POF-2, Ind-POF and Car-POF from N₂ adsorption data analyzed with NLDFT

Figure S5 CO₂ adsorption desorption isotherms of Ind-POF and Car-POF at 273 K and 298 K

Figure S6 Isosteric heat, Qst, of CO₂ adsorption for Ind-POF and Car-POF calculated from CO₂ adsorption at 273 K and 298 K

Figure S7 C_2H_6 adsorption desorption isotherms of Pyr-POF-1 and Pyr-POF-2 at 273 K and 298 K

Figure S8 Isosteric heat, Qst, of C_2H_6 adsorption for Pyr-POF-1 and Pyr-POF-2 calculated from C_2H_6 adsorption at 273 K and 298 K

Figure S9 C₂H₆ adsorption desorption isotherms of Ind-POF and Car-POF at 273 K and 298 K

Figure S10 Isosteric heat, Qst, of C_2H_6 adsorption for Ind-POF and Car-POF calculated from C_2H_6 adsorption at 273 K and 298 K

Figure S11 H_2 adsorption desorption isotherms of Pyr-POF-1 and Pyr-POF-2 at 77 K and 87 K

Figure S12 Isosteric heat, Qst, of H_2 adsorption for Pyr-POF-1 and Pyr-POF-2 calculated from H_2 adsorption at 77 K and 87 K

Figure S13 H₂ adsorption desorption isotherms of Ind-POF and Car-POF at 77 K and 87 K

Figure S14 Isosteric heat, Qst, of H₂ adsorption for Ind-POF and Car-POF calculated from H₂ adsorption at 77 K and 87 K

Isosteric heat of adsorption

The isosteric heat of adsorption for CO_2 , C_2H_6 and H_2 of each sample was calculated from adsorption isotherms collected at 273 and 298 K, for CO_2 and C_2H_6 and at 77 and 87 K for H_2 . The collected data for each sample was fitted to virial equation (1)

$$\ln p = \ln v + \frac{1}{T} \sum_{i=0}^{n_1} a_i v^i + \sum_{i=0}^{n_2} b_i v^i$$
(1)

where p is the pressure in mmHg, v is the adsorbed amount in mmolg⁻¹, T is the temperature in K and a_i and b_i are adjustable parameters.

The isosteric heat of H_2 adsorption, Q_{st} , was calculated according to the equation (2)

$$Q_{st} = -R \sum_{i=0}^{n1} a_i v^i$$
(2)

where R is the gas constant in $\text{Jmol}^{-1}\text{K}^{-1}$.

Figure S15 Virial fitting of CO₂ adsorption data points for Pyr-POF-1, Pyr-POF-2, Ind-POF and Car-POF

Figure S16 Virial fitting of C_2H_6 adsorption data points for Pyr-POF-1, Pyr-POF-2, Ind-POF and Car-POF

Figure S17 Virial fitting of H₂ adsorption data points for Pyr-POF-1, Pyr-POF-2, Ind-POF and Car-POF