Supporting Information:

Preparation of Graphene-like Iron Oxide Nanofilms/Silica Composite with Enhanced Adsorption and Efficient Photocatalytic Properties

Xiulin Yang,^{†,‡} Xueyun Wang,^{†,‡} Xianzong Liu,[†] Yanjun Zhang,[†] Weiguo Song,[†] Chunying Shu,[†] Li Jiang^{*†} and Chunru Wang^{*†}

[†] Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190

[‡] University of Chinese Academy of Sciences, Beijing 100039, China

Experimental Section

Materials: All chemical reagents used in this experiment were of analytical grade. $Pb(NO_3)_2$, Methylene blue (MB), tetraethylorthosilicate (TEOS), (3-aminopropyl) triethoxysilane (APTES), Hexadecyl trimethyl ammonium Bromide (CTAB), FeSO₄·7H₂O, K₂CO₃, HCl, NaOH, ethanol and ethylene glycol were procured commercially and were used as received without further purification.

Preparation of aminated silica (SiO₂-NH₂). In a typical synthesis, 4 mL (28 wt%) of NH₃·H₂O was dissolved into 100 mL of ethanol and 8 mL deionized water under magnetic stirring. After stirring for 15 min, 6 mL of tetraethylorthosilicate (TEOS) was added into the above-prepared mixture with vigorous stirring at 30 °C for 6 h to yield uniform silica spheres. Next, 1.45 mL of (3-aminopropyl) triethoxysilane (APTES) was added into the colloidal solution containing silica spheres and allowed to react for 1 h. The resulting aminated silica was collected by using a PTFE membrane with 0.22 μ m pore-size and washed with double-distilled water and ethanol several times, and dried at 70 °C overnight under a vacuum.

Synthesis of graphene-like Fe_2O_3 doped SiO_2 -NH₂ (G-Fe₂O₃/SiO₂-NH₂). SiO₂-NH₂ (0.1 g, 1.67 mmol), FeSO₄·7H₂O (0.1668 g, 0.6 mmol), CTAB (0.2187 g, 0.6 mmol) and K₂CO₃ (0.1658 g, 1.2 mmol) were one-pot dissolved in 60 mL of ethylene glycol (EG)-H₂O (2:1, v/v ratio) mixture. The resultant mixture was ultrasonic vibrations for 30 min and then transferred to a Teflon lined stainless-steel autoclave (capacity of 100 mL). The autoclave was sealed and maintained at 180 °C for 8 h. The system was then cooled to ambient temperature naturally. The final product was collected by using a PTFE membrane with 0.22 μ m pore-size and washed with

double-distilled water and ethanol several times, followed by vacuum-drying at 70 °C for 12 h.

Adsorption Experiments. The solution containing different concentrations of Pb(II) and MB with 10, 20, 30, 50, 80 and 100 mg·L⁻¹ were prepared using Pb(NO₃)₂ and MB as the sources, respectively. The pH value of the MB solution was adjusted to 6.5 with dilute HCl and NaOH solution prior to the adsorption experiments. The time-dependant curves were preformed with the initial concentration for 10 and 20 mg·L⁻¹, and the sample dose is 0.2 g·L⁻¹. At predetermined time intervals, 8 mL supernatant solution of Pb(II) was pipetted and filtered through 0.22 μ m PTFE membranes. For the MB, 4 mL analytical samples were taken from the suspension and immediately centrifuged at 10000 rpm for 2 min.

For the adsorption isotherms, 5 mg of the G-Fe₂O₃/SiO₂-NH₂ was added to 25 mL of the above solution under stirring at room temperature. After 12 h, the sample for adsorbed heavy metal ions were separated through 0.22 μ m PTFE membrane and analyzed by inductively coupled plasma-optical emission spectroscopy (Shimazu, ICPE-9000) to measure the concentration of metal ions in the remaining solution, and for the MB, 4 mL analytical samples were taken from the suspension and immediately centrifuged at 10000 rpm for 2 min. The adsorption capacity of the adsorbents was calculated according to the following equation:¹

$$q_e = \frac{(C_0 - C_e)V}{m} \tag{1}$$

where C_0 and C_e represent the initial and equilibrium concentrations (mg·L⁻¹), respectively. *V* is the volume of the solution (mL), and m is the amount of adsorbent (mg).

Photodegradation of methyl blue (MB). The Fenton oxidation of MB was conducted in a glass beaker with continuous magnetic stirring at room temperature. Before the experiment, the beaker containing 100 mL of 20 mg·L⁻¹ MB solution and 20 mg G-Fe₂O₃/SiO₂-NH₂ were stirred in a dark chamber for 30 min to reach the adsorption-desorption equilibrium. Then, 1 mL H₂O₂ (30%, w/w) was injected into the above solution under the irradiation of visible light (Mejiro genossen, MVL-210). At the given time intervals, analytical samples were taken from the suspension and immediately centrifuged at 10000 rpm for 2 min. The MB concentration was measured by using a UV-vis spectrophotometer.

Characterization. The morphology and microstructures of the samples were characterized by field emission scanning electron microscopy (FE-SEM, JEOL 6701F), and transmission electron

microscopy (TEM, JEOL 2010). X-ray diffraction (XRD) patterns were preformed on a Rigaku D/max-2500 diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) at 40 kV and 30 mA. XPS data were obtained with an ESCALab220i-XL electron spectrometer from VG Scientific using 300W Al K α radiation. Fourier transforms infrared spectrometry (FT-IR, Thermo Fisher Scientific) was employed to analyze the surface chemical composition. UV-visible spectroscopy (Shimadzu UV-2550) was used to analyze the concentration of MB at room temperature from 400 to 800 nm. Thermal gravity measurement was made on a TGA/STA409 PC module with a rising temperature rate of 10 °C·min⁻¹ from 50 to 1000 °C under continuous N₂ flow. The specific surface areas of the as-prepared products were measured on a Quantachrome Autosorb AS-1 instrument, and the pore size distributions were derived from the desorption branches of the isotherm with the Barrett-Joyner-Halenda (BJH) model. The pH value was measured using pH meter (Thermo Scientific, Model: 410p-13).

Figure Captions

Fig. S1 Transmission electron microscopy images of SiO₂-NH₂.

Fig. S2 EDX analysis of Fe₂O₃/SiO₂-NH₂.

Fig. S3 The BJH pore-size distribution curves of G-Fe₂O₃/SiO₂-NH₂ and SiO₂-NH₂ composites.

Fig. S4 UV–vis absorption spectra of the MB with 10 and 20 mg \cdot L⁻¹.

Fig. S5 Change in aqueous Pb(II) and MB concentration with time. The initial concentrations of Pb(II) is 10 mg·L⁻¹ and MB is 10 and 20 mg·L⁻¹. Sample dose is 20 mg/100 mL.

Fig. S6 Adsorption kinetics based on the (A) pseudo-first-order kinetic model and (B) pseudo-second-order kinetic model on the adsorption of MB and Pb(II) ions onto the $G-Fe_2O_3/SiO_2-NH_2$, the initial concentration is 10 or 20 mg·L⁻¹ and sample dose is 20 mg/100 mL.

Fig. S7 Freundlich isotherms model of $G-Fe_2O_3/SiO_2-NH_2$ adsorbed MB and Pb(II). The initial concentration is 10~100 mg·L⁻¹ and sample dose is 5 mg/25 mL.

Fig. S8 The saturated adsorption capacities of $G-Fe_2O_3/SiO_2-NH_2$ and SiO_2-NH_2 for Pb(II) and MB under the same conditions.

Table S1. Summary of Pb(II) and MB maximum adsorption capacities (q_m) on various adsorbents.

Fig. S1 Transmission electron microscopy images of SiO₂-NH₂.

Fig. S2 EDX analysis of G-Fe₂O₃/SiO₂-NH₂.

Fig. S3 The BJH pore-size distribution curves of G-Fe₂O₃/SiO₂-NH₂ and SiO₂-NH₂ composites.

Fig. S4 UV–vis absorption spectra of the MB with 10 and 20 mg \cdot L⁻¹.

Fig. S5 Change in aqueous Pb(II) and MB concentration with time. The initial concentrations of Pb(II) is 10 mg·L⁻¹ and MB is 10 and 20 mg·L⁻¹. Sample dose is 20 mg/100 mL.

Fig. S6 Adsorption kinetics based on the (A) pseudo-first-order kinetic model and (B) pseudo-second-order kinetic model on the adsorption of MB and Pb(II) ions onto the G-Fe₂O₃/SiO₂-NH₂, the initial concentration is 10 or 20 mg·L⁻¹ and sample dose is 0.2 g·L^{-1} .

Fig. S7 Freundlich isotherms model of G-Fe₂O₃/SiO₂-NH₂ adsorbed MB and Pb(II). The initial concentration is $10\sim100 \text{ mg}\cdot\text{L}^{-1}$ and sample dose is 5 mg/25 mL.

Fig. S8 The saturated adsorption capacities of $G-Fe_2O_3/SiO_2-NH_2$ and SiO_2-NH_2 for Pb(II) and MB under the same conditions.

Sorbents	Pb(II): $q_m (mg.g^{-1})$	$MB: q_m (mg.g^{-1})$	BET $(\mathbf{m}^2 \cdot \mathbf{g}^{-1})$
G-Fe ₂ O ₃ /SiO ₂ -NH ₂ (this study)	87.3	118.1	104.6
Mg-doped Fe ₂ O ₃ -ferrihydrite powder ²	99.1		
Fe ₂ O ₃ @Al(OH)CO ₃ ³	89.2		320.8
Urchin-like α -FeOOH hollow spheres ⁴	80		96.9
Magnesium Silicate Hollow Nanostructures ⁵	64.79		355.21
APAN Nanofiber Mats ⁶	60.6		
Manganese oxide-coated bentonite ⁷	58.88		
Multiwall carbon nanotubes/iron oxides ⁸	37.64		90.68
Magnetic cellulose–chitosan hydrogels ⁹	28.1		
Polyacrylonitrile/Silica Nanospheres ¹⁰	22.38		
Honeycomb-like Ni@C composite ¹¹	21.4		29.43
Ceria Hollow Nanospheres ¹²	9.2		72
Poly(acrylamide) ¹³	6.0		
Fe ₃ O ₄ /SiO ₂ -GO nanoparticles ¹⁴		97.0	
Iron Oxide Nanoparticles/Activated Carbon ¹⁵		47.62	
Carbon nanotubes ¹⁶		46.2	
Iron oxide-coated zeolite ¹⁷		12.52	
Coir pith carbon ¹⁸		5.87	

Table S1. Summary of Pb(II) and MB maximum adsorption capacities (q_m) on various adsorbents.

Reference

- (a) X.-Y. Yu, R.-X. Xu, C. Gao, T. Luo, Y. Jia, J.-H. Liu and X.-J. Huang, ACS Appl. Mat. Interfaces, 2012, 4, 1954-1962; (b) V. Rocher, J.-M. Siaugue, V. Cabuil and A. Bee, Water Res., 2008, 42, 1290-1298.
- 2 M. Mohapatra, L. Mohapatra, D. Hariprasad, S. Anand and B. K. Mishra, *Environ. Technol.*, 2011, 33, 1717-1726.
- 3 X. Yang, X. Wang, Y. Feng, G. Zhang, T. Wang, W. Song, C. Shu, L. Jiang and C. Wang, J. Mater. Chem. A, 2013, 1, 473-477.
- 4 B. Wang, H. Wu, L. Yu, R. Xu, T. T. Lim and X. W. Lou, Adv. Mater., 2012, 24, 1111-1116.
- 5 Y. Zhuang, Y. Yang, G. Xiang and X. Wang, J. Phys. Chem. C, 2009, 113, 10441-10445.
- 6 P. Kampalanonwat and P. Supaphol, ACS Appl. Mat. Interfaces, 2010, 2, 3619-3627.
- 7 E. Eren, B. Afsin and Y. Onal, J. Hazard. Mater., 2009, 161, 677-685.
- 8 L. Ji, L. Zhou, X. Bai, Y. Shao, G. Zhao, Y. Qu, C. Wang and Y. Li, J. Mater. Chem., 2012, 22, 15853-15862.
- 9 Z. Liu, H. Wang, C. Liu, Y. Jiang, G. Yu, X. Mu and X. Wang, Chem. Commun., 2012, 48, 7350-7352.
- 10 Q. Zhao and T. Cao, Ind. Eng. Chem. Res., 2012, 51, 4952-4957.
- 11 Y. Ni, L. Jin, L. Zhang and J. Hong, J. Mater. Chem., 2010, 20, 6430-6436.
- 12 C.-Y. Cao, Z.-M. Cui, C.-Q. Chen, W.-G. Song and W. Cai, J. Phys. Chem. C, 2010, 114, 9865-9870.
- 13 V. Mishra and R. Kumar, J. Appl. Polym. Sci., 2013, 128, 3295-3307.
- 14 Y. Yao, S. Miao, S. Yu, L. Ping Ma, H. Sun and S. Wang, J. Colloid Interface Sci., 2012, 379, 20-26.
- 15 B. Zargar, H. Parham and M. Rezazade, J. Chin. Chem. Soc., 2011, 58, 694-699.
- 16 Y. Yao, F. Xu, M. Chen, Z. Xu and Z. Zhu, Bioresour. Technol., 2010, 101, 3040-3046.
- 17 L. Zhao, W. Zou, L. Zou, X. He, J. Song and R. Han, Desalin. Water Treat., 2010, 22, 258-264.
- 18 D. Kavitha and C. Namasivayam, Bioresour. Technol., 2007, 98, 14-21.