Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO₂ capture

Jiacheng Wang,^{*a,b} Irena Senkovska,^b Martin Oschatz,^b Martin R. Lohe,^b Lars Borchardt,^b Andreas Heerwig,^b Qian Liu,^a and Stefan Kaskel^{*b}

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,1295 Dingxi Road, Shanghai 200050, China
^bDepartment of Inorganic Chemistry, Dresden University of Technology, Bergstraße
66, 01069 Dresden, Germany

*Corresponding author. Email address: jiacheng.wang@mail.sic.ac.cn

Fig. S1 The photograph of the as-prepared polyimine.

Fig. S2 FT-IR spectrum of polyimine.

Fig. S3 TG-DTG curves of polyimine in an air flow (10 °C/min). The mass loss of ~17.2 wt% between 140 °C and 300 °C should be ascribed to the evaporation of DMSO in polyimine. The mass of ~78.6 wt% between 380 °C to 800 °C should be due to the combustion of polyimine in air. The final residual mass is ~0.3 wt% at 850 °C.

Fig. S4 XRD patterns of polyimine and NPCs.

Fig. S5 XPS spectra of polyimine and various NPCs.

Sample	N [wt%]	C [wt%]	O [wt%]	S [wt%]	Si [wt%]	Cl [wt%]
polyimine	10.56	82.90	6.54			
NPC-600	4.54	77.69	12.82	2.16	2.62	0.17
NPC-650	4.05	85.97	7.86	1.26	0.61	0.26
NPC-700	3.49	79.54	11.35	2.47	2.90	0.25
NPC-750	1.45	90.62	6.11	0.46	1.09	0.26

Table S1 Elemental analysis of polyimine and various NPCs determined by XPS analysis.

Fig. S6 CO₂ sorption isotherms of polyimine at 25 and 0 $^\circ$ C, respectively.

Fig. S7 CO₂ sorption isotherms of NPC-600 at 25 and 0 $^\circ\text{C},$ respectively.

Fig. S8 CO₂ sorption isotherms of NPC-650 at 25 and 0 $^\circ$ C, respectively.

Fig. S9 CO₂ sorption isotherms of NPC-700 at 25 and 0 $^\circ\text{C},$ respectively.

Fig. S10 CO $_2$ sorption isotherms of NPC-750 at 25 and 0 °C, respectively.

Fig. S11 N_2 adsorption isotherm of NPC-650 at 25 $^\circ\text{C}.$

Fig. S12 N_2 sorption isotherm of NPC-650 at 0 $^\circ \text{C}.$

Fig. S13 Initial slopes from CO_2 and N_2 adsorption isotherms at 25 °C for NPC-650.

Fig. S14 Initial slopes from CO $_2$ and N $_2$ adsorption isotherms at 0 $^\circ C$ for NPC-650.

Sample	CO_2 uptake, mmol/g (mg/g)		- Dof
Sample	25 °C	0 °C	Kel.
NPC-650	3.1 (136)	5.26 (231)	This work
Activated graphite nanofibers	1.3 (59)		1
Conjugated microporous polymers	1.45 (64)		2
Olive stones-based carbon activated by CO ₂	2.0 (86)		3
Melamine-formaldehyde resin derived carbon	2.25 (99)		4
Hierarchical nanoporous melamine resin sponges		1.6 (70.4)	5
Urea-formaldehyde and melamine-formaldehyde	1.86 (82)		6
resin -based carbons			
Zeolitic imidazolate frameworks	2.7 (119)		7
CMK-3	2.2 (96)	3.8 (166)	8
CMK-8	2.1 (90)		8
Nitrogen-doped hierarchical carbons	2.2 (97)		9
Sulfur-doped microporous carbon	2.5 (110)		10
Nitrogen-doped porous carbon	1.39 (61)	2.39 (105)	11
N-doped zeolite Y template carbon	2.36 (104)		12
Nitrogen-doped hierarchical porous carbon	3.2 (141)		13
Nanostructured templated carbon	3.2 (141)		14
Mesoporous carbon supporting CaO	3.2 (141)		15
Triptycene-derived benzimidazole-linked polymers	3.3 (145)	5.1 (225)	16
Poly(benzoxazine-co-resol)-based porous carbon	3.3 (132)	4.9 (216)	17
Nitrogen-doped porous carbons	3.13 (137)		18
Nitrogen-doped ordered mesoporous carbon	3.3 (145)		19

Table S2 Comparison of the NPCs and some recently reported adsorbents for CO_2 capture at 1 bar and 25 or 0 °C.

References

- 1. L.-Y. Meng and S.-J. Park, J. Colloid Interface Sci., 2010, 352, 498.
- S. Ren, R. Dawson, A. Laybourn, J.-X. Jiang, Y. Khimyak, D. J. Adams and A. I. Cooper, Polymer Chem., 2012, 3, 928.
- 3. M. G. Plaza, C. Pevida, B. Arias, J. Fermoso, M. D. Casal, C. F. Martin, F. Rubiera and J. J. Pis, *Fuel*, 2009, **88**, 2442.
- 4. C. Pevida, T. C. Drage and C. E. Snape, *Carbon*, 2008, **46**, 1464.
- 5. A. Wilke and J. Weber, J. Mater. Chem., 2011, 21, 5226.
- 6. T. C. Drage, A. Arenillas, K. M. Smith, C. Pevida, S. Piippo and C. E. Snape, *Fuel*, 2007, **86**, 22.
- R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O'Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 3875.
- 8. M. Sevilla and A. B. Fuertes, J. Colloid Interface Sci., 2012, 366, 147.
- 9. M. C. Gutierrez, D. Carriazo, C. O. Ania, J. B. Parra, M. L. Ferrer and F. del Monte, *Energy Environ. Sci.*, 2011, 4, 3535.
- 10. Y. Xia, Y. Zhu and Y. Tang, *Carbon*, 2012, DOI:j.carbon.2012.07.044.
- 11. Z. Zhang, K. Wang, J. D. Atkinson, X. Yan, X. Li, M. J. Rood and Z. Yan, *J. Hazard. Mater.*, 2012, **229–230**, 183.
- 12. J. Zhou, W. Li, Z. Zhang, W. Xing and S. Zhuo, *RSC Adv.*, 2012, **2**, 161.
- 13. C. Chen, J. Kim and W.-S. Ahn, *Fuel*, 2012, **95**, 360.
- 14. L. Wang and R. T. Yang, J. Phys. Chem. C, 2011, **116**, 1099.
- 15. Z. Wu, N. Hao, G. Xiao, L. Liu, P. Webley and D. Zhao, *Phys. Chem. Chem. Phys.*, 2011, **13**, 2495.
- 16. M. G. Rabbani, T. E. Reich, R. M. Kassab, K. T. Jackson and H. M. El-Kaderi, *Chem. Commun.*, 2012, **48**, 1141.
- G.-P. Hao, W.-C. Li, D. Qian, G.-H. Wang, W.-P. Zhang, T. Zhang, A.-Q. Wang, F. Schueth, H.-J. Bongard and A.-H. Lu, *J. Am. Chem. Soc.*, 2011, **133**, 11378.
- 18. G.-P. Hao, W.-C. Li, D. Qian and A.-H. Lu, *Adv. Mater.*, 2010, **22**, 853.
- L. Liu, Q.-F. Deng, T.-Y. Ma, X.-Z. Lin, X.-X. Hou, Y.-P. Liu and Z.-Y. Yuan, J. Mater. Chem., 2011, 21, 16001.