Supplementary information

i. DSC traces

DSC was applied in three cycles at 20°C/ min for the synthesized PILs.

Figure S1. DSC trace of [ImPr][Phth]

Figure S2. DSC trace of [ImPr][Ox]

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2013

Figure S3. DSC trace of [ImPr][HSO₄]

Figure S4. DSC trace of [ImPr][BDT]

Figure S5 DSC trace of [ImPr][Pim]

ii. TGA and DSC

DSC initially had been done in the range of $-150 - 400^{\circ}$ C in one cycle at 20°C/min. and the results have been compared with TGA data.

Figure S6. [ImPr][Pim] TGA and DSC traces

Figure S7. [ImPr][Ox] TGA and DSC traces

Figure S8. [ImPr][Phth] TGA and DSC traces

Figure S9. [ImPr][BDT] TGA and DSC traces

iii. Viscosity measurement at different temperatures

|--|

Temperature(°C)	Viscosity (Pa.s)
31	236.2
32	213.5
33	185.9
34	168.2
35.5	136.2
36	129.7
37.5	109.2
38	97.2
39	91.1
40	79.8
42	62.9
43	55.9
44	48

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013

46	39.9
47	35.1
48	31.7
49.5	26.7
51	24.7
52	22.6
54	19.9
55	16.4
56	15.8
61	9.9
66	4.8
71	2.3
78	1.5
81	0.9
87	0.4
96	0.3
101	0.2
104	0.2

 Table S2 Change in viscosity of [ImPr][Pim] as function of temperature

Temperature(°C)	15	20	25	30	35	40	45	50
Viscosity (Pa.s)	16	11.4	4	4.5	2.1	1.6	1	0.6

IV. Ion conductivity measurement

1000/T (K ⁻¹)	conductivity (µS/cm)
3.47	29
3.41	39.6
3.35	58.6
3.30	88.5
3.25	123.4
3.19	161.5
3.14	205
3.09	270

Table 3 Conductivity data for [ImPr][Pim] by temperature

Table 4 Conductivity data for [ImPr][Phth] by temperature

1000/T (K ⁻¹)	conductivity (µS/cm)
3.28	37.8
3.28	38.3
3.28	39
3.28	41.9
3.28	41
3.28	40
3.28	43.2
3.28	44
3.28	47.2
3.27	48.7
3.27	50.8
3.27	51.5
3.26	52.6
3.26	54
3.26	55.1

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013

3.26	56.7
3.26	58
3.25	59.4
3.25	61
3.24	75.3
3.23	77
3.23	80
3.23	86
3.22	92
3.21	96.7
3.21	101
3.20	110
3.20	114
3.20	118
3.19	122
3.19	127
3.19	132
3.18	141
3.17	170
3.17	175
3.17	183
3.16	189
3.16	200
3.16	210
3.15	222
3.15	233
3.13	260
3.12	282
3.11	310
3.11	330
3.10	360
3.09	384
3.08	416
3.08	442
j	

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013

3.08	470
3.07	508
3.06	537
3.04	587
3.04	625
3.02	702
3.02	708
3.02	704
3.01	740
3.01	790
2.98	860
2.98	924
2.96	1000
2.94	1063
2.94	1111
2.91	1133
2.90	1260
2.87	1440
2.82	1770
2.81	1860
2.79	1940
2.78	2030
2.76	2100
2.74	2200
2.73	2300
2.73	2410
2.69	2610

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2013

V. Crystalline structure

The crystalline features of [ImPr][Ox] and [ImPr][Phth] were assessed by scanning electron microscopy (SEM). A JEOL JSM-5600 SEM operating at 15 kV was used to obtain the images.

Figure S10 a) SEM image of [ImPr][Phth] at 100µm zooming b) SEM image of [ImPr][Phth] 10 µm zooming c) SEM image of [ImPr][Ox] at 100µm d) SEM image of [ImPr][Ox] at 10 µm zooming

SEM images were obtained of the surface of solid samples prepared by melting the powder and subsequent solidification, the samples were then coated with a 10 nm layer of gold to ensure good surface conductivity. SEM micrographs of the surface of [ImPr][Phth], [ImPr][Ox] and [ImPr][HSO₄] were recorded and shows in Figure S12.

The crystalline features have been observed for all these three samples. Due to the high sensitivity of the [ImPr][HSO₄] to the beam, the image did not have a good quality. Both [ImPr][Ox] and [ImPr][Phth] samples show needle-shaped morphology.

VI. Density measurement

Figure S11. Changes in densities by temperature for selected PILs in this study

VII. Crystal structure

Detail of the xray crystallography experiments is available in CIF file.

Figure S12. Ion packing in the crystal structure of [ImPr][BDT]. The distances of the aromatic rings between ionic and molecular ImPr are 5.92 Å. Viewed along the a-axis

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2013

Figure S13. Ion packing in the crystal structure of [ImPr][BDT]. The distances between the aromatic rings of benzene-1,2- thiolate/disulfide are 5.2-5.7 Å. Viewed down the b-axis