Pt-CuS heterodimers by sulfidation of CuPt alloy nanoparticles and their selective catalytic activity toward methanol oxidation

Xianguang Ding, ^{abc} Yu Zou,^a Feng Ye,^d Jun Yang^{*d} and Jiang Jiang^{*a}

- ^a i-Lab and Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China 215123. Fax: +86-512- 6260 3079; Tel: +86-512-6287 2662; E-mail: jjiang2010@sinano.ac.cn
- ^b Institute of Biophysics, Chinese Academy of Sciences, Beijing, China 100101
- ^c Graduate University of Chinese Academy of Sciences
- ^d State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China 100190. Fax: +86-10-8254 4814; Tel: +86-10-8254 4915; E-mail: jyang@mail.ipe.ac.cn

Electronic Supplementary Information

Fig. S1 TEM images of CuPt alloy nanoparticles synthesized by (a) Cu-seeded

growth and (b) Pt-seeded growth method.

Fig. S2 Elemental line scan profile corresponding to CuPt alloy nanoparticles shown in Fig. S1b. A rather homogeneous distribution of Cu and Pt was observed, indicating successful synthesis of CuPt alloys.

Fig. S3 X-ray diffraction pattern of CuPt alloy nanoparticles grown from Cu seeds.

Fig. S5 Elemental line scan profile corresponding to Pt-CuS heterodimer nanoparticles shown in Fig. 2a.

Fig. S6 Room-temperature CO stripping from the CuS-Pt heterodimers and commercial Pt/C catalysts in $HClO_4$ (0.1 M).

