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1. Experimental 

1.1. Materials 

Graphite powder (99.99995%, 100 mesh) was purchased from Alfa Aesar. 

N-(2-aminoethyl)-3-aminopropyltrimethoxysilane was purchased from Liyang 

Mingtian Chemical Engineering Co., Ltd. H2O2 (30%) and N, N-dimethylformamide 

(DMF) were analytically pure and obtained from Sinopharm Chemical Reagent Co., 

Ltd. P2O5, K2S2O8, KMnO4, H2SO4, and hydrazine hydrate were analytically pure and 

obtained from Nanjing Chemical Reagent Co., Ltd. PLLA (Mw=120,000) was 

synthesized following the method reported by Jiang W et al., in which isotactic 

polycondensation of L-lactic acid was catalyzed by biogenic creatinine.
1
 All these 

reagents were used as received.  

1.2. Preparation of RGO and KH792 modified RGO (KH792-RGO) 

GO was firstly prepared by modified Hummers method.
2
 The synthesized GO was 

purified by washing with deionized water and centrifuged successively three times, 

and suspended in deionized water by ultrasonication. The GO suspension was frozen 

dried to obtain the GO powders. 0.1 g of GO powders was dispersed in 200 mL of 

DMF via ultrasonication for 0.5 h. 0.2 g of KH792 was then added to the GO 

dispersion and the mixture was stirred at 80 
o 
C for 10 h to get the KH792-GO. The 

resultant was filtrated and washed by DMF successively three times to remove the 

excess KH792. KH792-GO suspension was obtained after washing and dispersed in 

200 mL of DMF by ultrasonication for another 30 min. 0.2 g of hydrazine hydrate was 

then added into the dispersion to reduce KH792-GO at 90 
o
 C for 24 h. Finally the 
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reaction mixture was filtrated and washed by DMF successively three times to obtain 

KH792-RGO. The product was dispersed in DMF by ultrasonication and the 

concentration was measured. The RGO suspension with non-modification was also 

prepared. Without addition of 0.2 g of KH792, the GO mixture was reduced by 

hydrazine hydrate directly. 

1.3. Preparation of PLLA/KH792-RGO composite 

To prepare the nanocomposites, PLLA was firstly dissolved in DMF with a 

concentration of 25 wt%, followed by KH792-RGO suspension with a selected 

concentration added into the PLLA/DMF solution. The mixture was then stirred for 2 

h and poured into a PTFE plate to remove the solvent at 80 
o 
C for 6 h. The samples 

were finally dried under vacuum at 120 
o 

C for 48 h. The PLLA/KH792-RGO 

nanocomposites with remarkable enhancement of mechanical properties and heat 

distortion resistance were obtained. 

1.4. Characterization 

The Fourier transform infrared spectra (FTIR) were recorded on a NICOLET 

NEXUS 870 spectrophotometer at room temperature in the 400-4000 cm
-1

 region.  

Thermal gravimetric analysis (TGA) was examined using a Perkin-Elmer TGA-7 

thermo gravimetric analyzer. Samples (2 mg) were loaded in platinum pans and 

measured from 25 to 700 
o 

C under a nitrogen environment at a heating rate of 20 
o 

C/min.  

Transmission electron microscopy (TEM, JEM-2100) was carried out to study the 

morphologies. For RGO and KH792-RGO, one drop of the suspension was placed on 
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the sample grid, and the solvent was allowed to evaporate. For the nanocomposites, 

the samples were embedded in epoxy resin, and ultra-thin sections were made by 

using a Leica ULTRACUT UC6 with tens of nanometers thick. The sections were 

collected onto copper grids and then imaged at 200 kV.  

X-ray photoelectron spectroscopy (XPS) (VG Microtech 2000 ESCA) was 

performed using a monochromatized Al Kα X-ray source (1486.6 eV).  

Wide-angle X-ray diffraction (WAXD) patterns were recorded in transmission with 

a Bruker D8 Advance X-ray diffractometer. The wavelength used was Cu Kα (λ = 

0.154 nm), and spectra were recorded in the 2θ range of 4–40° (step size 0.01°). 

Morphologies of nanocomposite were also examined using a scanning electron 

microscopy (SEM, Hitachi S-4800). Samples were prepared by cryogenic fracture to 

observe a representative section (cross-section). An accelerating voltage of 10 kV 

with an Au coating of the sample was used to image the sections. 

Rheology measurements were performed on HAAKE Rheo-Stress 600 rheometer at 

200 °C, using a set of 20 mm diameter parallel plates with a sample thickness of ca. 

0.7 mm.  

The dynamic mechanical tests were carried out on a dynamic mechanical analyzer 

(DMA, SDTA861
e
). The viscoelastic properties were measured from 20 

o
C to 190 

o
C 

under a nitrogen atmosphere, at a heating rate of 2 
o
C/min and frequency of 1 Hz. 

Heat distortion resistance tests were carried out in an oven at different temperature 

(45
 o

C, 75 
o
C and 105

 o
C). Samples were molded in an injection molding machine 

(Thermo-Haake Minijet II) and then were put in the oven for 15 minutes with a 
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weight of 200 g hanging in the bottom. The final length of samples was measured. 

Differential Scanning Calorimeter (DSC) analyses were run using a Perkin Thermal 

Analysis (Pyris 1 DSC) instrument. Samples (5 mg) were loaded in aluminum pans, 

and tests were performed under nitrogen flow of 50 ml/min. For non-isothermal melt 

crystallization, the sample was heated to 190 at a rate of 20 
o
C/min, held for 3 min to 

erase any thermal history, and cooled to 20 
o
C at a rate of 5 

o
C/min. The 

crystallization peak temperature was read from the cooling process. For isothermal 

melt crystallization, the sample was heated to 190 at a rate of 20 
o
C/min, held for 3 

min to erase any thermal history, cooled to the chosen crystallization temperature at a 

rate of 40 
o
C/min, and held for a period of time until the isothermal crystallization was 

complete. The crystallization temperatures chosen in this work was 127 
o
C. The 

evolution of heat flow with crystallization time was recorded during the isothermal 

crystallization process for the later data analysis. 

An optical microscope (Olympus BX51) equipped with a temperature controller 

(Linkam THMS 600) was used to investigate the spherulitic morphology of neat 

PLLA and the PLLA/KH792-RGO nanocomposites. The samples were first annealed 

at 190 
o
C for 3 min and then cooled rapidly to 146 

o
C. 

2. Characterization of the functionalized RGO  

 

Fig. S1 (a) FTIR spectra of GO, KH792-GO, RGO and RGO792, (b) TGA analysis of 
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GO, RGO and KH792-RGO, (c) X-ray diffraction patterns of RGO and KH792-RGO. 

Fig. S1(a) showed the portion of amplificatory FTIR spectra of GO, RGO and 

KH792-RGO. The FT-IR spectrum of GO showed a C-O stretch at 1074 cm
-1

, a broad 

O-H stretch at 3100-3600 cm
-1

 as well as a C=O stretch at 1730 cm
-1

, which was in 

accord with previous report
3
. In the FTIR spectrum of RGO, the peaks at 1730 cm

-1
 

(C=O) and 3100-3600 cm
-1

 (O-H) disappeared, suggesting that the GO was 

successfully reduced. In the FTIR spectrum of KH792-RGO, the absorption peak at 

1045 cm
-1

 representing the Si–O–C bond and the peak at 1119 cm
-1

 representing the 

Si-O-Si bond appeared, indicating the successful introduction of KH792. The peak 

emerging at 1650 cm
-1

 was characteristic of the C=O stretch in the amide group
4
, 

which was not found in the spectrum of RGO. The peak at 3415 cm
-1

 was attributed to 

N–H stretching
5
. These results demonstrated that KH792 were covalently bonded to 

RGO, and it was introduced through the amidation with the carboxyl groups of GO.
6
 

Fig. S2(b) showed the TGA curves of GO, RGO and KH792-RGO. The TGA 

pattern of GO under nitrogen revealed two evident mass losses, which agreed with 

previous report.
7
 The thermostabilization had been much improved after the 

successful reduction of GO. Compared with RGO, the KH792-RGO showed more 

weight loss, which was caused by the pyrolysis of KH792. Hence, the successful 

covalent functionalization of RGO sheets with KH792 was also reflected in TGA 

curves. 

The powder X-ray diffraction (XRD) pattern of KH792-RGO was compared with 

that of RGO depicted in Fig. S2(c). The RGO displayed a wide diffraction peak at 
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2θ = 26.5°, corresponding to the diffraction plane of (002) with the interlayer spacing 

of 0.336 nm, consistent with a well crystallized structure of graphite powders.
8
 

KH792-RGO showed a relatively broaden diffraction peak centered at 2θ = 23°. The 

corresponding interlayer spacing was 0.384 nm, which was larger than that of RGO, 

suggesting that the KH792 were successfully inserted into the sheets of RGO. The 

improved interlayer spacing could facilitate their uniform dispersion in appropriate 

organic media or polymer matrix.
9
  

X-Ray photoelectron spectroscopy (XPS) was employed to further explore the 

interactions between RGO and KH792. Fig S2 showed the survey data of the samples 

and the higher resolution spectra of the Si2p, O1s, and C1s areas, respectively. The 

XPS spectra were collected on RGO and KH792-RGO dry powders. The survey of 

RGO (Fig. S2(a)) showed the absence of any detectable amounts Si (strongest XPS 

band was Si2p usually found between 95 and 110 eV depending on the chemical 

environment) and N1s (strongest XPS band was N1s usually found between 400 and 

407 eV depending on the chemical environment). Compared with RGO, the survey of 

KH792-RGO (Fig. S2(b)) showed the presence of Si2p and N1s originating from 

KH792. The atom composition of N and Si element in KH792-RGO were 11.42% and 

10.74% respectively (Table 1). These indicated that the graphene was successfully 

functionalized by KH792. 
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Fig. S2 The survey curves of RGO (a) and KH792-RGO (b). 

Table 1 Elementary composition of KH792-RGO 

Element Peak Atom composition (%) 

C 1s 51.89 

O 1s 25.96 

N 1s 11.42 

Si 2p 10.74 

 

3. Crystallization behavior 

There was a close relationship between the degree of crystallinity and the storage 

modulus of semi-crystalline polymers. In order to investigate the effects of 

KH792-RGO on the crystallization of PLLA, the crystallization behavior was studied. 

Non-isothermal and melt crystallization with cooling rate of 5 
o
C/min of neat PLLA 

and the nanocomposites was performed. As shown in Fig. S3(a), neat PLLA showed a 

melt crystallization peak temperature (Tcc) at around 113.0 
o
C with crystallization 

enthalpy (ΔHcc) around 39.3 J/g, and the values of degree of crystallinity (Wc) was 

determined to be 45.3%; however, Tcc values shift gradually to 115.5 
o
C with the 

addition of 0.1 wt % KH792-RGO, and the values of ΔHcc were around 42.0, 43.3 and 
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42.8 for PLLA/KH792-RGO-0.1%, PLLA/KH792-RGO-0.2% and 

PLLA/KH792-RGO-0.5% respectively. The values of Wc were determined to be 

around 48.4%, 49.9% and 49.3%, respectively. It was clear that Tcc increased 

apparently in the nanocomposites than in neat PLLA, as well as the ΔHcc and Wc. 

Higher degree of crystallinity would result in higher storage modulus.  

 

Fig. S3 (a) Non-isothermal melt crystallization with cooling rates 5 
o
C/min and (b) 

isothermal melt crystallization at 127 
o
C of neat PLLA and the nanocomposites. 

The effect of KH792-RGO on the isothermal melt crystallization kinetics of PLLA 

in the nanocomposites was also investigated. The isothermal crystallization kinetics 

was studied at 127 
o
C. Fig. S3(b) showed the plots of relative crystallinity against 

crystallization time. It was clear that all these curves had similar sigmoid shape, but 

the corresponding crystallization time for the PLLA/KH792-RGO nanocomposites 

become shorter with increasing the KH792-RGO loading. It was obvious that the 

incorporation of KH792-RGO enhanced the isothermal melt crystallization of PLLA 

remarkably compared with neat PLLA. With enhanced crystallization rate, the storage 

modulus of the PLLA/KH792-RGO nanocomposites increased faster than neat PLLA. 
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Fig. S4 displayed the spherulitic morphology of neat PLLA and the nanocomposites 

crystallized at 127 
o
C. As shown in Fig. S4(a), the well-developed spherulites of neat 

PLLA grew to a size of about 150 μm in diameter, and the boundaries were clear. Fig. 

S4 (b, c, and d) illustrated the polarizing optical microscope (POM) images of the 

nanocomposites with the KH792-RGO loading from 0.1 to 0.5 wt% respectively. It 

was obvious that there were more spherulites in the PLLA/KH792-RGO 

nanocomposites than in neat PLLA, while the size of PLLA spherulites was smaller in 

the PLLA/KH792-RGO nanocomposites than in neat PLLA. Such variations indicated 

that the nucleation density of PLLA spherulites increased in the PLLA/KH792-RGO 

nanocomposites because of the nucleating agent effect of KH792-RGO.  

 

Fig. S4 POM images of neat PLLA and the nanocomposites crystallized at 127 
o
C for 

30 min; (a) neat PLLA, (b) PLLA/KH792-RGO-0.1%, (c) PLLA/KH792-RGO-0.2%, 

and (d) PLLA/KH792-RGO-0.5%. 

4. Heat Distortion Resistance of PLLA-POSS nanocomposites (for control). 

To show the heat distortion resistance of PLLA composites with other types of filler 
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in the rubber state, we prepared a PLLA-POSS composite with 2 wt% of 

N-Phenylaminomethyl POSS according to a previous publication.
10

 As shown in Fig. 

S5, the heat distortion resistance of PLLA-POSS-2% was only slightly varied as 

compared to neat PLLA. 

 

Fig. S5 Heat distortion resistance of PLLA/POSS-2% at different temperature. 
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