Electronic Supplementary Information

## Non-Precious Ir-V Bimetallic Nanoclusters Assembled on Reduced Graphene Oxide Nanosheets as Catalysts for the Oxygen Reduction Reaction

Ruizhong Zhang, <sup>1, 2</sup> and Wei Chen\*<sup>1</sup>

<sup>1</sup>State Key Laboratory of Electroanalytical Chemistry, Changchun institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China, and

<sup>2</sup>University of the Chinese Academy of Sciences, Beijing 100039, China

E-mail: weichen@ciac.jl.cn



**Fig. S1** TEM image of rGO-supported  $Ir_xV$  nanoclusters. (a)  $Ir_{21}V/rGO$ , (b)  $Ir_{14}V/rGO$ , (c)  $Ir_{11}V/rGO$ .



**Fig. S2** UV-Vis absorption spectra of GO and the  $Ir_xV/rGO$  hybrids.



**Fig. S3** Ir 4f and C 1s XPS spectra of  $Ir_x V$  nanoclusters supported on rGO. (a, b)  $Ir_{21}V/rGO$ ; (c, d)  $Ir_{14}V/rGO$ ; (e, f)  $Ir_{11}V/rGO$ .



**Fig. S4** CO stripping cyclic voltammograms of the as-synthesized Ir/rGO and  $Ir_xV/rGO$  in 0.1 M HClO<sub>4</sub> at a potential scan rate of 50 mV/s.



Fig. S5 Steady-state ORR polarization curves of disk ( $I_d$ ), and ring electrode ( $I_r$ ) from  $Ir_xV/rGO$  in O<sub>2</sub>-saturated 0.1 M KOH at different rotation rates. (a) Ir/rGO; (b)  $Ir_{11}V/rGO$ ; (c)  $Ir_{14}V/rGO$ ; and (d)  $Ir_{21}V/rGO$ .



**Fig. S6** Rotating disk electrode linear sweep voltammograms at various rotation rates and the Koutecky-Levich plots obtained on  $Ir_xV$ -rGO. (a, b) Ir/rGO; (c, d)  $Ir_{11}V/rGO$ ; (e, f)  $Ir_{14}V/rGO$ ; (g, h)  $Ir_{21}V/rGO$ .