Supporting Information for the manuscript

A Cationic MicroporousMetal-Organic Framework for Highly Selective Separation of Small Hydrocarbons at Room Temperature

Hui Xu^{*a*}, Jianfeng Cai^{*a*}, Shengchang Xiang^{*d*}, Zhangjing Zhang^{*d*}, Chuande Wu^{*e*}, Xiangtang Rao^{*a*}, Yuanjing Cui^{*a*}, Yu Yang^{*a*}, Rajamani Krishna^{*c}, Banglin Chen^{**ab*} and Guodong Qian^{**a*}

^aState Key Laboratory of Silicon Materials, Cyrus Tang Center for SensorMaterials and Applications, Department of Materials Science &Engineering,Zhejiang University, Hangzhou 310027, China. E-mail:gdqian@zju.edu.cn

^bDepartment of Chemistry, University of Texas at San Antonio, OneUTSA Circle, San Antonio, Texas 78249-0698, USA. E-mail: banglin.chen@utsa.edu; Fax: (+1) 210-458-7428

^cVan't Hoff Institute for Molecule Sciences, University of Amsterdam Science Park 904, 1098 XH Amsterdam (The Netherlands). E-mail: r.krishna@uva.nl

^dCollege of Chemistry and Materials, Fujian Normal University, 3 Shangsan Road, Cangshang Region, Fuzhou, 350007, China

^eDepartment of Chemistry, Zhejiang University, Hangzhou 310027, China

*Corresponding Authors. E-mail:gdqian@zju.edu.cn, banglin.chen@utsa.edu, r.krishna@uva.nl

1. Fitting of pure component isotherms

The measured experimental data on pure component isotherms for **ZJU-48a**, were first converted to absolute loading using the Peng-Robinson equation of state for estimation of the fluid densities. The pure component isotherm data for CH_4 , C_2H_2 , C_2H_4 , and C_2H_6 , expressed in terms of *absolute* loadings, were fitted with the Langmuir isotherm model

$$q = q_{A,sat} \frac{b_A p}{1 + b_A p} \tag{1}$$

with T-dependent parameter b_A

$$b_A = b_{A0} \exp\left(\frac{E_A}{RT}\right) \tag{2}$$

The fitted parameter values are presented in Table S1. Figure S4 presents IAST calculations of the component molar loadings in equilibrium with an *equimolar* $CH_4/C_2H_2/C_2H_4/C_2H_6$ mixture as a function of the total bulk gas phase pressure at 296K.

2. Adsorption selectivity

Let us first consider the separation of CH_4 from a mixture containing C_2 hydrocarbons. Rather than restrict our investigations to just binary CH_4/C_2H_6 mixtures, we consider the selective adsorption of C_2 hydrocarbons from an equimolar 4-component $CH_4/C_2H_2/C_2H_4/C_2H_6$ mixture. The choice of such a mixture is dictated by the fact that such mixture separations are encountered in the process oxidative coupling of methane for producing ethene.

We define the adsorption selectivity, defined by

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$
(3)

Here p_1 and p_2 are taken to be the partial pressures of C_2H_6 and CH_4 , respectively. The q_1 and q_2 are the molar loadings in the adsorbed phase, C_2H_6 and CH_4 , respectively, expressed in mol per kg of adsorbent material.

3. Isosteric heat of adsorption

The isosteric heat of adsorption, $Q_{\rm st}$, defined as

$$Q_{st} = RT^2 \left(\frac{\partial \ln p}{\partial T}\right)_q \tag{4}$$

were determined using the pure component isotherm fits.

4. Breakthrough in fixed bed adsorber unit

In demonstrate the separation performance of a pressure swing adsorption (PSA) unit, we performed breakthrough calculations with step-input of an equimolar CH₄/C₂H₂/C₂H₄/C₂H₆ mixture. The *x*-axis in Figure 5 is a dimensionless time, τ , defined by dividing the actual time, *t*, by the characteristic time, $\frac{L\varepsilon}{u}$.

	$q_{\mathrm{A,sat}}$	$b_{ m A0}$	E _A
	mol kg⁻¹	Pa ⁻¹	kJ mol ⁻¹
C ₂ H ₂	6.9	9.6×10 ⁻⁹	15.6
C ₂ H ₄	6.9	4.87×10 ⁻¹⁰	21.7
C ₂ H ₆	9	2.91×10 ⁻¹¹	28
CH ₄	3.2	4.06×10 ⁻⁹	14

Table S1. Langmuir isotherm parameter fits for ZJU-48a

Figure S1 Fluorescent microscope images of **ZJU-48** crystals illuminated with visible light.

Figure S2. TG of ZJU-48

Figure S3. PXRD patterns of **ZJU-48** (simulated: black; as-synthesized: blue; activated at 0 °C in vacuum for 12h: red).

Figure S4. IAST calculations of the component molar loadings in equilibrium with an *equimolar* $CH_4/C_2H_2/C_2H_4/C_2H_6$ mixture at total bulk gas phase at 296 K.

Figure S5. IAST calculations of the C_2H_6/CH_4 adsorption selectivity of four MOFs for adsorption from an equimolar $CH_4/C_2H_2/C_2H_4/C_2H_6$ mixture at total bulk gas phase at 296 K.

Figure S6 The isoteric heats of adsorption of different porous materials for C₂H₆.

Dimensionless time, $\tau = t u / \varepsilon L$

Figure S7. Pulse chromatographic simulations for separation of an *equimolar* 4-component $CH_4/C_2H_2/C_2H_4/C_2H_6$ mixture with **ZJU-48a** as adsorbent material. A pulse of the equimolar mixture is injected for 10 s at the start of the process, and subsequently the adsorbed components are desorbed by use of purge inert gas.

5. References

(1) Myers, A. L.; Prausnitz, J. M. Thermodynamics of mixed gas adsorption, A.I.Ch.E.J. **1965**, *11*, 121-130.