Supporting Information:

Performance study of enhanced visible-light-driven photocatalysis and magnetical protein separation of multifunctional yolk-shell nanostructures

Wenjun Dong,^{*a} Yanjun Zhu,^a Huandi Huang,^a Liangshu Jiang,^a Huijuan Zhu,^a Chaorong Li,^a Benyong Chen,^a Zhan Shi,^b Ge Wang^c

^a Center for Nanoscience and Nanotechnology, Department of Physics, Key
Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of China, Zhejiang Sci-Tech University, Hangzhou 310018, P R China.
E-mail:wenjundong@zstu.edu.cn
^b State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin, University, Changchun 130012, P R China.

^c School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P R China.

To whom correspondence should be addressed. E-mail: <u>wenjundong@zstu.edu.cn</u>; Tel.: +86-571-86843587. Fax: +86-571-86843587.

Figure S1. SEM image of the purposely selected broken $SiO_2@TiO_2@Ni(OH)_2$ to reveal the yolk-shell structure.

Figure S2. XRD pattern of the product obtained by coating the $Ni(OH)_2$ on the surface of the SiO2@TiO2 microspheres at 110 °C for 1h.

Figure S3. SEM image of as-obtained product obtained with NaOH as the precipitation agent.

Figure S4. TEM images of (A, B) SiO₂@TiO₂@Ni(OH)₂ YSNs with different SiO₂ diameters, and (C) TiO₂@Ni(OH)₂ hollow microspheres.

Figure S5 SEM images of the SiO₂@TiO₂@Ni(OH)₂ YSNs with different overall diameters: (A) $(410\pm20$) nm, (B) (480 ± 20) nm, (C) (600 ± 30) nm.

Figure S6 TEM image of as-obtained SiO₂@TiO₂@Ni(OH)₂ product prepared in nickel nitrate solution with concentration of 80 mM Ni(NO₃)₂.

Figure S7 PL Photoluminescence spectra measured at room temperature for $NiTiO_3$ hollow structures and $SiO_2@NiTiO_3$ yolk-shell nanostructures. The excitation wavelength was 221 nm.

Figure S8. EDX spectra of the final Fe_3O_4 @Ti O_2 @Ni(OH)₂ YSNs.