Electronic Supplementary Information (ESI)

Graphene-Wrapped Hierarchical TiO_{2} Nanoflower Composite with Enhanced Photocatalytic Performance

Gregory Lui, ${ }^{1}$ Jin-Yun Liao, ${ }^{1}$ Aoshu Duan, ${ }^{2}$ Zisheng Zhang, ${ }^{2}$ Michael Fowler ${ }^{1}$ and Aiping Yu ${ }^{1 *}$
${ }^{1}$ Department of Chemical Engineering, University of Waterloo, Canada;
${ }^{2}$ Department of Chemical Engineering, University of Ottawa, Canada
Corresponding author: Aiping Yu, aipingyu@uwaterloo.ca

Characterization of materials using FTIR

FTIR was performed to investigate the functionality and interaction between TiO_{2} and RGO . RGO shows peaks at $1718 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1577 \mathrm{~cm}^{-1}$ (skeletal vibration), $1399 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{OH})$, and $1246 \mathrm{~cm}^{-1}$ (C-O-C) (J. Mater. Chem. C, 2013, 1, 3104-3109). The TiO_{2} materials share a common broad peak at $\sim 3400 \mathrm{~cm}^{-1}(-$ $\mathrm{OH})$ associated with the adsorption of water. The TiO_{2} nanoflower also has a second peak at $1629 \mathrm{~cm}^{-1}$, which is assigned to the binding vibration of the H-O bond (J Nanopart Res (2008) 10:729-736). The $0.05 \mathrm{G}-\mathrm{TiO}_{2}$ composite also shares this peak at $1617 \mathrm{~cm}^{-1}$, however it is red shifted due to the presence of the skeletal vibration of RGO. The composite also has two small additional peaks at $1265 \mathrm{~cm}^{-1}$ and 1061 cm^{-1}, which can be assigned to the C-O-C and C-O stretching vibration of RGO. Therefore, although other groups have reported Ti-O-C peaks at 1738, 1260, 1096, and $798 \mathrm{~cm}^{-1}$ (Angew. Chem. Int. Ed., 2003, 42, 4908-4911, Turk. J. Chem. 2005, 29, 487) which are also seen in our results, based on our data it is difficult to confirm the presence of this interaction due to their strong similarity to vibrational modes of RGO.

Fig. S1 FTIR spectra of RGO, TiO_{2} Nanoflower, and $0.05 \mathrm{G}-\mathrm{TiO}_{2}$.

