Pyrite Nanorod Arrays as Efficient Counter

Electrode for Dye-Sensitized Solar Cells

Qing-Hui Huang, Tao Ling, Shi-Zhang Qiao and Xi-Wen Du*

School of Materials Science and Engineering, Tianjin University, Tianjin

300072, P. R. China

* Corresponding author: xwdu@tju.edu.cn

Figure S1. The morphology of the FeOOH nanorod arrays produced by 5 h hydrothermal reaction. (a) Top-view and (b) side-view SEM images.

Figure S2. The XRD spectra of FeOOH nanorods and FeS₂ nanorods array on FTO substrate. (a) Wide-scan survey spectrum for all elements, (b) precise-scan spectrum in 2θ range of $32\sim37^{\circ}$.

Figure S3. The characterizations of FeS_2 nanoparticle. (a) TEM and (b)&(c)&(d) HRTEM images, (e) EDS spectrum, (f) XRD pattern (with FTO substrate).

Figure S4. Hall Effect measurements of FeS₂ nanorod arrays, the slope of the pattern is 2.27×10^{-4} Ohm/T.

Figure S5. Absorption properties of FeOOH and FeS₂ nanorod arrays. (a) UV-Vis absorption spectra of FeOOH and FeS₂ nanorods arrays. (b) $(\alpha hv)^{1/2}$ -hv plot of FeS₂ nanorods array.

Figure S6. Photoluminescence spectra of the as-prepared FeS_2 nanostructures.

Figure S7. SEM images of FeS_2 films with different thicknesses. (a) 100 nm, (b) 200 nm and (c) 400 nm. The insets are the corresponding cross-sectional images.

Figure S8. CV plots of FeS₂ films with different thicknesses.

Figure S9. Stability of FeS_2 NR arrays in iodide electrolyte. (a) CV plots of FeS_2 NR arrays at different aging times. SEM images of (b) as-prepared FeS_2 NR arrays and (c) those being soaked in electrolyte for 10 days.