Supplementary Information

⁵ Polymer Brush-Functionalized Surfaces with Unique Reversible Double-Stimulus Responsive Wettability

Wei Sun, Shuxue Zhou, Bo You and Limin Wu*

10

Department of Materials Science, and State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, the Advanced Coatings Research Center of MEC, Fudan University, Shanghai 200433, China E-mail: <u>Imw@fudan.edu.cn</u>

15

S1. Synthesis of azo monomer.

Materials. 4-(Trifluoromethoxy)aniline (99%), 2-bromoethanol (96%), potassium iodide (KI, 99.9%), triethylamine (99.9%), 4-dimethylamiopryidine (DMAP, 98%) and methacryloyl chloride 20 (95%) were purchased from Aladdin. Phenol (99%), sodium nitrite (NaNO₂, 99%), sodium carbonate (Na₂CO₃, 99%), sodium hydroxide (NaOH, 96%), concentrated sulfuric acid (98%), potassium carbonate (K₂CO₃, 99%), *N*,*N*-Dimethylformamide (DMF, 99.5%), dichloromethane (99.5%) and acetone (99.5%) were purchased from Sinopharm Chemical Reagent Corp.

25 Synthesis. Synthetic route for synthesis of azo monomer was shown in Scheme S1.

4-Hydroxy-4'-trifluoromethoxy-azobenzene (1)

(1) was synthesized according to a previously described method.¹ Typically, 0.075 mol of 4-trifluoromethoxy-aniline was dissolved under heating in a mixture of 21 ml concentrated sulphuric acid and 21 ml water. After that the solution was cooled to 0°C followed by dropwise addition of a 30 solution of 0.1 mol NaNO₂ in 40 ml water at 0°C to start diazotization reaction. The mixture was stirred at 0-5 °C for 15 min. The coupling reaction was carried out by slowly adding the diazotization

solution to a solution of 0.08 mol phenol, 0.087 mol NaOH and 0.566 mol Na₂CO₃ in 360 ml water at 0-5 °C. The yellow-orange colored precipitate of (1) was filtered, dried and recrystallized from n-hexane.

¹H NMR (500 MHz, CDCl3, TMS) δ [ppm]: 6.96 (2H, d, Ar-H), 7.33 (2H, d, Ar-H), 7.91 (4H, t,

5 Ar-H). GC-MS: 99.5%, m/z = 282.

4-(2-hydroxyethyloxy)-4'-trifluoromethoxy-azobenzenes (2)

30 mmol of (1), 150 mmol of dry K₂CO₃ and a trace of KI were mixed in 120 ml dry acetone and heated to 50°C. After stirred for 0.5 h, 2-bromoethanol was added dropwise into the mixture. The mixture was then stirred vigorously and refluxed for 5 days. After cooled, the precipitated salt was 10 filtered. The crude product was dissolved in dichloromethane and washed with water for 5 times to remove the unreacted 2-bromoethanol and salt.

¹H NMR (500 MHz, CDCl3, TMS) δ [ppm]: 4.02 (2H, t, CH₂O), 4.19 (2H, t, CH₂O), 7.04 (2H, d, Ar-H), 7.33 (2H, d, Ar-H), 7.91 (4H, t, Ar-H). GC-MS: 99.8%, m/z = 326.

[4-(2- methylacryloyloxy) ethyloxy-4'-trifluoromethoxy] azobenzenes (3)

15 5 mmol of (2), 10 mmol of triethylamine, 0.1 mmol of DMAP and 10 mmol of methacryloyl chloride was dissolved in dichloromethane, and stirred at 20 °C for 12 h. Then the solution was concentrated by distillation and purified by column chromatography using petroleum ether and ethyl acetate (volume ratio: 5:1) as the eluent.

¹H NMR (500 MHz, CDCl3, TMS) δ [ppm]: 1.96 (3H, s, CH), 4.32 (2H, t, CH₂O), 4.54 (2H, t, CH₂O), 20 5.61 (1H, s, CH2=), 6.16 (1H, s, CH2=), 7.02 (2H, d, Ar-H), 7.33 (2H, d, Ar-H), 7.91 (4H, t, Ar-H). GC-MS: 99.0%, m/z = 394.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2013

Scheme S1. Synthetic route for synthesis of azo monomer.

5

Photoresponsive properties of the azo monomer film.

To study the photoresponsive properties of the azo monomer film, a solution of azo monomer in dichloromethane (10 mg·L⁻¹) was cast onto a quartz plate and form a thin film at room temperature. The as-synthesized azo monomer (3) is photoresponsive which corresponded to *trans/cis* isomerization 10 of azobenzene groups under UV and visible light irradiation. With UV and visible light irradiation, reversible photoresponse was observed with azo monomer film. As shown in **Figure S1**, the initial as-synthesized azo monomer film exhibits the maximum absorption at about 328 nm, which is due to the π - π * transition bands of trans-azobenzene. After UV light irradiation, the intensity of the π - π * transition band at 328 nm decreases and a new peak of 446 nm appears due to the n- π * transition band. 15 After visible light illumination, the spectrum of the azo monomer film recovers.

Figure S1. UV-vis spectra of azo monomer film with three sample states: as-synthesized, after UV-irradiation and after vis-irradiation. 5

S2. Synthesis of double-stimulus responsive wettability film with reverse pH responsibility

Synthesis of triblock copolymers PtBMA-b-PGMA-b-PMAAZO.

- 10 A solution of AIBN (0.0164 g, 0.1 mmol), CDB (0.136 g, 0.5 mmol), and *t*-BMA (2.8 g, 20 mmol) in benzene (3.0 mL) was degassed by three freeze-pump-thaw cycles, and then thermostated at 60°C under nitrogen atmosphere. After reaction for 12 h, GMA (1.4 g, 10 mmol) was added to the system by a syringe, and this reaction was allowed to proceed for another 2 h before quenched with liquid nitrogen. $M_{n,GPC} = 4.5 \times 10^3$ g/mol and $M_w/M_n = 1.15$.
- The resultant diblock copolymer was used as a polymeric chain transfer agent (macro-CTA) to initiate polymerization of azo monomer. A solution of azo monomer (1.0 g, 2.5 mmol), macro-CTA (0.18 g, 0.04 mmol), and AIBN (0.003 g, 0.02 mmol) in DMF (3.0 mL) was degassed by three freeze-pump-thaw cycles, and stirred at 70°C under nitrogen atmosphere for 48 h and then quenched with liquid nitrogen. $M_{n,GPC} = 2.75 \times 10^4$ g/mol and $M_w/M_n = 1.23$.

Figure S2. GPC monitoring the synthesis of copolymer PDPAEMA-*b*-PGMA-*b*-PMAAZO.

Figure S3. ¹H NMR spectra of triblock copolymer PDPAEMA-*b*-PGMA-*b*-PMAAZO.

Grafting of polymer Brushes onto amino-functionalized SiO₂ films.

SiO₂ films covered with V-shaped polymer brushes were prepared by grafting an ABC-type 5 triblock copolymer, P*t*BMA-*b*-PGMA-*b*-PMAAZO, onto the surfaces of amino-functionalized SiO₂ films by employing a coupling reaction between epoxy and amine groups. The SiO₂ substrates were immersed into a DMF solution containing 2.5 wt% P*t*BMA-*b*-PGMA-*b*-PMAAZO and 0.5 wt% triethylamine at 70°C for 12 h. The substrates were washed with excess THF and dried in vacuum.

The polymer brush-grafted SiO₂ film substrates were then immersed into a dichloromethane 10 solution containing 2 wt% TFA at room temperature for 24 h. Finally the substrates were washed with excess dichloromethane and dried in vacuum.

References

15 1. D. Prescher, T. Thiele, R. Ruhmann and G. Schulz, J. Fuorine Chem., 1995, 74, 185.